Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Biomedical Engineering and Bioengineering

Dynamic Balance Control During Treadmill Walking In Chronic Stroke Survivors, Eric Richard Walker Oct 2013

Dynamic Balance Control During Treadmill Walking In Chronic Stroke Survivors, Eric Richard Walker

Dissertations (1934 -)

Maintaining dynamic balance is an important component of walking function that is likely impaired in chronic stroke survivors, evidenced by an increased prevalence of falls. Dynamic balance control requires maintaining the center of mass (COM) within the base of support during movement. During walking, dynamic balance control is achieved largely by modifying foot placement to adjust the base of support. However, chronic stroke survivors have difficulty with both precision control of foot placement, as well as reduced control of COM movement. The objective of this dissertation was to characterize dynamic balance control strategies during walking in chronic stroke survivors. Additionally ...


Slow Potentials Of The Sensorimotor Cortex During Rhythmic Movements Of The Ankle, Ryan J. Mckindles Oct 2013

Slow Potentials Of The Sensorimotor Cortex During Rhythmic Movements Of The Ankle, Ryan J. Mckindles

Dissertations (1934 -)

The objective of this dissertation was to more fully understand the role of the human brain in the production of lower extremity rhythmic movements. Throughout the last century, evidence from animal models has demonstrated that spinal reflexes and networks alone are sufficient to propagate ambulation. However, observations after neural trauma, such as a spinal cord injury, demonstrate that humans require supraspinal drive to facilitate locomotion. To investigate the unique nature of lower extremity rhythmic movements, electroencephalography was used to record neural signals from the sensorimotor cortex during three cyclic ankle movement experiments. First, we characterized the differences in slow movement-related ...