Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

2013

Other Biomedical Engineering and Bioengineering

The Summer Undergraduate Research Fellowship (SURF) Symposium

Articles 1 - 2 of 2

Full-Text Articles in Biomedical Engineering and Bioengineering

In Vivo Method For Labeling And Tracking Cells In The Mammalian Limb Bud, James T. Mccarthy, Andrew Schilb, Sarah Calve Oct 2013

In Vivo Method For Labeling And Tracking Cells In The Mammalian Limb Bud, James T. Mccarthy, Andrew Schilb, Sarah Calve

The Summer Undergraduate Research Fellowship (SURF) Symposium

The extracellular matrix (ECM) is composed of many different proteins excreted by cells and is believed to play a very important role in development as well as regeneration and wound healing. In this research, a method to determine the ECM’s effect on the migration of muscle progenitor cells into the mammalian limb bud was investigated. It has traditionally been difficult to obtain in vivo images of the limb bud, due to the difficulty of maintaining embryos in culture and limitations of imaging techniques. In this study, we have worked on optimizing the culture conditions to allow growth of mouse embryos …


The Effects Of Exogenous Extracellular Matrix And Substrate Stiffness On Mouse Tendon Cells In Vitro, Caleb J. Mcdaniel, Sarah Calve Oct 2013

The Effects Of Exogenous Extracellular Matrix And Substrate Stiffness On Mouse Tendon Cells In Vitro, Caleb J. Mcdaniel, Sarah Calve

The Summer Undergraduate Research Fellowship (SURF) Symposium

To improve the treatment of musculoskeletal injuries, a better understanding of the transitional environment in which progenitor cells form mature musculoskeletal constructs is necessary. This need arises because injury repair requires restructuring of tissue, similar to the initial tissue construction that occurs during embryonic development by progenitor cells. Differences in both the biochemical and mechanical environments between a transitional and a differentiated state are known to take place, but how these differences affect cell behavior had not yet been characterized in mammalian tendon cells. In order to investigate this, we have determined the effects of exogenous extracellular matrix and the …