Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Biomedical Engineering and Bioengineering

High Rate Detection Of Volatile Products Using Differential Electrochemical Mass Spectrometry: Combining An Electrode-Coated Membrane With Hydrodynamic Flow In A Wall-Tube Configuration, Subramanian Venkatachalam, Robert J. Angelici, L. Keith Woo, Andrew C. Hillier Jan 2013

High Rate Detection Of Volatile Products Using Differential Electrochemical Mass Spectrometry: Combining An Electrode-Coated Membrane With Hydrodynamic Flow In A Wall-Tube Configuration, Subramanian Venkatachalam, Robert J. Angelici, L. Keith Woo, Andrew C. Hillier

Chemical and Biological Engineering Publications

We present an experimental system that combines differential electrochemical mass spectrometry with hydrodynamic flow consisting of an impinging jet in a wall-tube configuration. This assembly allows simultaneous detection of electrochemical signals along with monitoring of dissolved gas species using differential electrochemical mass spectrometry under well-defined hydrodynamic conditions and over a wide range of mass transfer rates. The working electrode is deposited directly onto a thin, hydrophobic membrane, which also serves as the inlet to the mass spectrometer. This inlet provides extremely rapid mass detection as well as a high flux of products from the electrode surface into the mass spectrometer ...


Evaluation Of Coarse-Grained Mapping Schemes For Polysaccharide Chains In Cellulose, Sergiy Markutsya, Ajitha Devarajan, John Ysrael Baluyut, Theresa Lynn Windus, Mark S. Gordon, Monica H. Lamm Jan 2013

Evaluation Of Coarse-Grained Mapping Schemes For Polysaccharide Chains In Cellulose, Sergiy Markutsya, Ajitha Devarajan, John Ysrael Baluyut, Theresa Lynn Windus, Mark S. Gordon, Monica H. Lamm

Chemical and Biological Engineering Publications

A fundamental understanding of the intermolecular forces that bind polysaccharide chains together in cellulose is crucial for designing efficient methods to overcome the recalcitrance of lignocellulosic biomass to hydrolysis. Because the characteristic time and length scales for the degradation of cellulose by enzymatic hydrolysis or chemical pretreatment span orders of magnitude, it is important to closely integrate the molecular models used at each scale so that, ultimately, one may switch seamlessly between quantum, atomistic, and coarse-grained descriptions of the system. As a step towards that goal, four multiscale coarse-grained models for polysaccharide chains in a cellulose-Iα microfiber are considered. Using ...


Tin Dioxide-Carbon Heterostructures Applied To Gas Sensing: Structure-Dependent Properties And General Sensing Mechanism, Catherine Marichy, Patricia A. Russo, Mariangela Latino, Jean-Philippe Tessonnier, Marc-Georg Wilinger, Nicola Donato, Giovanni Neri, Nicola Pinna Jan 2013

Tin Dioxide-Carbon Heterostructures Applied To Gas Sensing: Structure-Dependent Properties And General Sensing Mechanism, Catherine Marichy, Patricia A. Russo, Mariangela Latino, Jean-Philippe Tessonnier, Marc-Georg Wilinger, Nicola Donato, Giovanni Neri, Nicola Pinna

Chemical and Biological Engineering Publications

Carbon materials such as carbon nanotubes (CNTs), graphene, and reduced graphene oxide (RGO) exhibit unique electrical properties, which are also influenced by the surrounding atmosphere. They are therefore promising sensing materials. Despite the existence of studies reporting the gas-sensing properties of metal oxide (MOx) coated nanostructured carbon, an incomplete understanding of their sensing mechanism remains. Here we report a systematic study on the preparation, characterization, and sensing properties of CNT and RGO composites with SnO2 coating. Atomic layer deposition (ALD) was applied to the conformal coating of the inner and outer walls of CNTs with thin films of SnO2 of ...