Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

2013

Biomaterials

Institution
Keyword
Publication
Publication Type

Articles 1 - 30 of 38

Full-Text Articles in Biomedical Engineering and Bioengineering

Production Of Lignin-Based Phenolic Resins Using De-Polymerized Kraft Lignin And Process Optimization, Homaira Siddiqui Dec 2013

Production Of Lignin-Based Phenolic Resins Using De-Polymerized Kraft Lignin And Process Optimization, Homaira Siddiqui

Electronic Thesis and Dissertation Repository

Commercialization of Lignin-based phenol formaldehyde resins (LPF) has been limited due to the increase in curing temperatures and decrease in adhesive strength of LPF compared to conventional phenolic resins. Lignin depolymerization can increase the reactivity of lignin; however, the effect of lignin molecular weight on curing performance of LPF resins has yet to be investigated. This research work examined the optimization of synthesis parameters including percent substitution of phenol with lignin, formaldehyde- to-phenol ratio (F/P), and Mw of lignin to reduce the curing temperature and increase the adhesive strength of LPF. DSC analysis indicated that lignin with Mw ~1200g ...


Stability Of Silk And Collagen Protein Materials In Space, Xiao Hu, Waseem K. Raja, Bo An, Olena Tokareva, Peggy Cebe, David L. Kaplan Dec 2013

Stability Of Silk And Collagen Protein Materials In Space, Xiao Hu, Waseem K. Raja, Bo An, Olena Tokareva, Peggy Cebe, David L. Kaplan

Faculty Scholarship for the College of Science & Mathematics

Collagen and silk materials, in neat forms and as silica composites, were flown for 18 months on the International Space Station [Materials International Space Station Experiment (MISSE)-6] to assess the impact of space radiation on structure and function. As natural biomaterials, the impact of the space environment on films of these proteins was investigated to understand fundamental changes in structure and function related to the future utility in materials and medicine in space environments. About 15% of the film surfaces were etched by heavy ionizing particles such as atomic oxygen, the major component of the low-Earth orbit space environment ...


Biomimetic Poly(Ester Amide) Biomaterials For Vascular Tissue Engineering, Darryl K. Knight Dec 2013

Biomimetic Poly(Ester Amide) Biomaterials For Vascular Tissue Engineering, Darryl K. Knight

Electronic Thesis and Dissertation Repository

The focus of this research was to develop a biomimetic, degradable vascular scaffold that could be considered as part of a tissue-engineered vascular graft strategy. A family of degradable poly(ester amide)s (PEAs) derived from naturally occurring α-amino acids, aliphatic diols and diacids were synthesized to yield PEAs with glass transition temperatures below physiologic temperature ensuring their pliability. Tri-functional amino acids l-lysine or l-aspartic acid were incorporated into the polymer backbone yielding complementary functional handles for subsequent conjugation of growth factors. Higher molecular weight PEAs were obtained using an interfacial polycondensation technique compared with a solution polymerization approach.

Human ...


The Advancement Of Bacterial Cellulose As A Bone And Vascular Scaffolds, Ryan Lee Hammonds Dec 2013

The Advancement Of Bacterial Cellulose As A Bone And Vascular Scaffolds, Ryan Lee Hammonds

Doctoral Dissertations

Bacterial cellulose (BC) is a natural hydrogel made of nanofibers. This material has been used in commercial products, including wound dressings. BC can be modified and optimized for improved performance in multiple applications. This work will focus on producing and characterizing resorbable cellulose, a composite for bone applications, and a composite for a synthetic venous valve leaflet.

BC can be produced and modified to perform as a degradable tissue scaffold. This is achieved by an oxidation procedure after the initial production and purification of native BC. A material characterization of oxidized BC was performed to identify the changes in properties ...


Mechanical Properties Of Bone Due To Sost Expression: Nanoindentation Assessment Of Murine Femurs, Amir Rafie Dec 2013

Mechanical Properties Of Bone Due To Sost Expression: Nanoindentation Assessment Of Murine Femurs, Amir Rafie

Master's Theses and Project Reports

In the human genome, the SOST gene codes for a protein sclerostin. Sclerostin is an osteocyte-expressed negative regulator of bone formation. When the SOST gene is not coded, bone formation is reduced in individuals during skeletal maturation. This study utilizes nanoindentation methods to test for the mechanical properties of bones that both express and do not express the SOST gene. 100 transgenic murine femurs were obtained from Lawrence Livermore Labs in the form of 6 and 8 month SOST transgenic mice, 6 and 12 month SOST knockout mice, and wild type control littermates for each of the 4 age groups ...


Adhesive Elastomeric Proteins, Haefa Mansour, Julie Liu Oct 2013

Adhesive Elastomeric Proteins, Haefa Mansour, Julie Liu

The Summer Undergraduate Research Fellowship (SURF) Symposium

Sutures and staples commonly used to close surgical wounds tend to be much stiffer than the surrounding tissue, often resulting in external tissue damage. Surgical adhesives provide a promising alternative to these sutures and staples. Ideal surgical adhesives are biocompatible, able to set well and remain sticky in moist conditions, possess strong adhesive and cohesive properties, and exhibit mechanical properties that mimic those of the surrounding tissue. Unfortunately, the adhesives available today are unable to satisfactorily meet all of these criteria. We are utilizing protein engineering techniques to design, create, and test a new surgical adhesive that combines the adhesive ...


Iron-Magnesium Alloy Bioabsorbable Blood Stent, Kaitlyn Jarry, L Stanciu Oct 2013

Iron-Magnesium Alloy Bioabsorbable Blood Stent, Kaitlyn Jarry, L Stanciu

The Summer Undergraduate Research Fellowship (SURF) Symposium

Bioabsorbable materials are fairly new and proper alloys for implantation in the body have not yet been established. There are a few polymers that have showed promise, but they do not provide the proper mechanical support that metal does. These materials would be used to create devices such as blood stents and orthopedic screws. Investigation into the properties of different alloys can help to establish a material that can be used for implanted devices that are only needed for a limited amount of time. In order to investigate these alloys many different experiments will to be run to test the ...


Quantification Of Local Hemodynamic Alterations Caused By Virtual Implantation Of Three Commercially-Available Stents For The Treatment Of Aortic Coarctation, Sung Kwon Oct 2013

Quantification Of Local Hemodynamic Alterations Caused By Virtual Implantation Of Three Commercially-Available Stents For The Treatment Of Aortic Coarctation, Sung Kwon

Master's Theses (2009 -)

Patients with coarctation of the aorta (CoA) are prone to morbidity including atherosclerotic plaque that has been shown to correlate with altered wall shear stress (WSS) in the descending thoracic aorta (dAo). We created the first patient-specific computational fluid dynamics (CFD) model of a CoA patient treated by Palmaz stenting, and compared resulting WSS distributions to those from virtual implantation of the NumedCP and GenesisXD stents also commonly used for CoA. CFD models were created from magnetic resonance, fluoroscopy and blood pressure (BP) data. Simulations incorporated vessel deformation, downstream vascular resistance and compliance to match measured data and generate blood ...


Bionano Electronics: Magneto-Electric Nanoparticles For Drug Delivery, Brain Stimulation And Imaging Applications, Rakesh Guduru Sep 2013

Bionano Electronics: Magneto-Electric Nanoparticles For Drug Delivery, Brain Stimulation And Imaging Applications, Rakesh Guduru

FIU Electronic Theses and Dissertations

Nanoparticles are often considered as efficient drug delivery vehicles for precisely dispensing the therapeutic payloads specifically to the diseased sites in the patient’s body, thereby minimizing the toxic side effects of the payloads on the healthy tissue. However, the fundamental physics that underlies the nanoparticles’ intrinsic interaction with the surrounding cells is inadequately elucidated. The ability of the nanoparticles to precisely control the release of its payloads externally (on-demand) without depending on the physiological conditions of the target sites has the potential to enable patient- and disease-specific nanomedicine, also known as Personalized NanoMedicine (PNM). In this dissertation, magneto-electric nanoparticles ...


Adaptation Of Scenedesmus Dimorphus To Brackish Water, Dustin Bowden, Joanne M. Belovich Sep 2013

Adaptation Of Scenedesmus Dimorphus To Brackish Water, Dustin Bowden, Joanne M. Belovich

Undergraduate Research Posters 2013

Microalgae is a promising biofuel feedstock for replacement of conventional transportation fuels. Microalgae does not require arable land for cultivation, and the biofuel production rate per acre of land is an order of magnitude greater than that needed for crop-based production methods. Though microalgae to biofuel processes are attractive, none have proven commercially successful due to the high costs of algae dewatering. Moreover, the scarcity of fresh water in many parts of the world prevents development of this process because of competition with drinking water supplies. Our lab has developed an efficient dewatering method using an inclined gravity settler. It ...


Amine Functionalization Of Bacterial Cellulose For Targeted Delivery Applications, Justin Cook Aug 2013

Amine Functionalization Of Bacterial Cellulose For Targeted Delivery Applications, Justin Cook

Electronic Thesis and Dissertation Repository

Bacterial cellulose (BC), produced by acetic acid bacteria Gluconacetobacter xylinus, is ideal for delivery and related biomedical functions. It is FDA approved for wound dressings and internal applications, non-toxic to endothelial cells and has little effect on blood profiles. Conjugation of therapeutics to BC can be accomplished through the available alcohol groups of the anhydroglucose units (AGU), making targeted delivery possible. Amine was introduced to BC through a reaction involving epichlorohydrin and ammonium hydroxide. The chemical structure was analyzed using infrared spectroscopy and quantified through pH titration. Conjugation of amine to BC was demonstrated through fluorescein-5’-isothiocyanate (FITC) and bromocresol ...


Influence Of Van Der Waals Forces On Increasing The Strength And Toughness In Dynamic Fracture Of Nanofibre Networks: A Peridynamic Approach, Florin Bobaru Ph.D. Jul 2013

Influence Of Van Der Waals Forces On Increasing The Strength And Toughness In Dynamic Fracture Of Nanofibre Networks: A Peridynamic Approach, Florin Bobaru Ph.D.

Florin Bobaru Ph.D.

The peridynamic method is used here to analyse the effect of van der Waals forces on the mechanical behaviour and strength and toughness properties of three-dimensional nanofibre networks under imposed stretch deformation. The peridynamic formulation allows for a natural inclusion of long-range forces (such as van der Waals forces) by considering all interactions as ‘long-range’. We use van der Waals interactions only between different fibres and do not need to model individual atoms. Fracture is introduced at the microstructural (peridynamic bond) level for the microelastic type bonds, while van der Waals bonds can reform at any time. We conduct statistical ...


Butyl Rubber-Aliphatic Polyester Graft Copolymers For Biomedical Applications: Synthesis And Analysis Of Chemical, Physical And Biological Properties, Bethany A. Turowec Jun 2013

Butyl Rubber-Aliphatic Polyester Graft Copolymers For Biomedical Applications: Synthesis And Analysis Of Chemical, Physical And Biological Properties, Bethany A. Turowec

Electronic Thesis and Dissertation Repository

Biomaterials can be used in a wide variety of medical applications owing to their breadth of characteristics that can be imparted by varying their chemical structures. Butyl rubber (IIR), which is a copolymer of isobutylene (IB) and small percentages of isoprene (IP), is particularly attractive as a biomaterial because of its elastomeric mechanical properties, biocompatibility, impermeability and high damping characteristics. IIR is typically vulcanized through chemical-based crosslinking mechanisms. However, these methods are not acceptable for biological applications. This thesis focuses on the synthesis of IIR-polyester graft copolymers by grafting biodegradable and biocompatible polyesters including poly(caprolactone) (PCL) and poly(d ...


An Assessment Of Novel Biodegradable Magnesium Alloys For Endovascular Biomaterial Applications, Dharam Persaud-Sharma Jun 2013

An Assessment Of Novel Biodegradable Magnesium Alloys For Endovascular Biomaterial Applications, Dharam Persaud-Sharma

FIU Electronic Theses and Dissertations

Magnesium alloys have been widely explored as potential biomaterials, but several limitations to using these materials have prevented their widespread use, such as uncontrollable degradation kinetics which alter their mechanical properties. In an attempt to further the applicability of magnesium and its alloys for biomedical purposes, two novel magnesium alloys Mg-Zn-Cu and Mg-Zn-Se were developed with the expectation of improving upon the unfavorable qualities shown by similar magnesium based materials that have previously been explored. The overall performance of these novel magnesium alloys has been assessesed in three distinct phases of research: 1) analysing the mechanical properties of the as-cast ...


Materials Education And Research In Art And Design: A New Role For Libraries (Program Booklet), Mark Pompelia Jun 2013

Materials Education And Research In Art And Design: A New Role For Libraries (Program Booklet), Mark Pompelia

Materials Education and Research in Art and Design: A New Role for Libraries

No abstract provided.


Materials Education And Research In Art And Design: A New Role For Libraries (Website), Mark Pompelia Jun 2013

Materials Education And Research In Art And Design: A New Role For Libraries (Website), Mark Pompelia

Materials Education and Research in Art and Design: A New Role for Libraries

No abstract provided.


Materials Education And Research In Art And Design: A New Role For Libraries (Survey Stats), Mark Pompelia Jun 2013

Materials Education And Research In Art And Design: A New Role For Libraries (Survey Stats), Mark Pompelia

Materials Education and Research in Art and Design: A New Role for Libraries

No abstract provided.


Materials Education And Research In Art And Design: A New Role For Libraries (Program Sheet), Mark Pompelia Jun 2013

Materials Education And Research In Art And Design: A New Role For Libraries (Program Sheet), Mark Pompelia

Materials Education and Research in Art and Design: A New Role for Libraries

No abstract provided.


Materials Collection Creation And Administration: A New Role For Libraries (White Paper), Mark Pompelia Jun 2013

Materials Collection Creation And Administration: A New Role For Libraries (White Paper), Mark Pompelia

Materials Education and Research in Art and Design: A New Role for Libraries

The Problem/Opportunity: To define, identify, and guide design-based materials collections in academic settings and foster community among those with existing collections and/or those considering creating and supporting one.

Contents and topics:

  1. What is a materials collection?
  2. Why have a materials collection?
  3. Acquisition strategies
  4. Organizational approaches
  5. Programming possibilities
  6. Symposium summary
  7. Resources


Electrospun Plant Protein Scaffolds With Fibers Oriented Randomly And Evenly In Three-Dimensions For Soft Tissue Engineering Applications, Shaobo Cai Jun 2013

Electrospun Plant Protein Scaffolds With Fibers Oriented Randomly And Evenly In Three-Dimensions For Soft Tissue Engineering Applications, Shaobo Cai

Textiles, Merchandising and Fashion Design: Dissertations, Theses, & Student Research

In this work, electrospinnable and water stable soyprotein was extracted by using a reducing agent in mild alkaline condition, and novel 3D zein and 3D pure soyprotein electrospun scaffolds with three-dimensionally and randomly oriented fibers and large interconnected pores were successfully fabricated by reducing surface resistivity of materials. This unique structure is different from most electrospun scaffolds with fibers oriented mainly in one direction. The structure of novel 3D scaffolds could more closely mimic the 3D randomly oriented fibrous architectures in many native extracellular matrixes (ECM). Confocal laser scanning microscope shows that instead of becoming flattened cells when cultured in ...


Fluorescence Characterization Of Quantum Dots For Use As Biomarkers, Logan M. Grimes Jun 2013

Fluorescence Characterization Of Quantum Dots For Use As Biomarkers, Logan M. Grimes

Materials Engineering

Fluorescence profiles of quantum dots (QDs) were characterized to select the ideal QDs for encapsulation in phospholipids for use as biomarkers to selectively adhere to cancer cells. QDs were synthesized and extracted 0, 30, 60, and 90 seconds after precursor compounds were mixed. These extractions were isolated by extraction time. Portions from each vial were coated in a zinc sulfide shelling procedure, leaving at least half of the QD solution unshelled. These samples were characterized over four days to monitor fluctuations in fluorescence. This was done utilizing an Ocean Optics spectrometer in conjunction with Spectra Suite software. The central wavelength ...


Shelf Life Study Of Electrospun Plga Copolymers, Sean Youra, Nick Hudson Jun 2013

Shelf Life Study Of Electrospun Plga Copolymers, Sean Youra, Nick Hudson

Biomedical Engineering

Poly(lactic-co-glycolic acid) (PLGA) is one of the most commonly used copolymers for electrospinning in tissue engineering applications. However, most research has not focused on the copolymer itself in regards to how long it can be used effectively and if varying the concentrations of polylactic acid (PLA) and polyglycolic acid (PGA) affect the resulting properties. Electrospinning is the method we use to create the three-dimensional constructs, or “scaffolds”, for the blood vessel mimic (BVM) in the tissue engineering lab. The aim of our project was to investigate if the morphology and mechanical properties of the scaffolds changed over time when ...


Evaluation Of Thermophile Algae In Horizontal Photo-Bioreactor, Olivier Schmied Jun 2013

Evaluation Of Thermophile Algae In Horizontal Photo-Bioreactor, Olivier Schmied

BioResource and Agricultural Engineering

No abstract provided.


Femtosecond Laser Patterned Templates And Imprinted Polymer Structures, Deepak Rajput May 2013

Femtosecond Laser Patterned Templates And Imprinted Polymer Structures, Deepak Rajput

Doctoral Dissertations

Femtosecond laser machining is a direct-write lithography technique by which user-defined patterns are efficiently and rapidly generated at the surface or within the bulk of transparent materials. When femtosecond laser machining is performed with tightly focused amplified pulses in single-pulse mode, transparent substrates like fused silica can be surface patterned with high aspect ratio (>10:1) and deep (>10 μm) nanoholes. The main objective behind this dissertation is to develop single-pulse amplified femtosecond laser machining into a novel technique for the production of fused silica templates with user-defined patterns made of high aspect ratio nanoholes. The size of the nanoholes ...


Design Of An Experimental Approach To Study The Growth Of Biofilm On Polymethylmethacrylate, Eireen S. Escalona May 2013

Design Of An Experimental Approach To Study The Growth Of Biofilm On Polymethylmethacrylate, Eireen S. Escalona

Biomedical Engineering

Biofilms are present in virtually every solid-liquid contact surface and are partially responsible for some diseases and water cleaning. They are a community of a variety of organisms that live symbiotically and are bound together by extracellular polymeric substances, or EPS. Biofilms go through five stages of development. These include initial and irreversible attachments, maturations I and II, and dispersion. In the dental world, biofilms are often associated with mouth infections including dental caries, gingivitis and periodontitis. Elderly denture wearers are susceptible to the pathogen-causing bacteria associated with these diseases, particularly those who have Alzheimer's disease or other forms ...


Closed Loop Control Of A Cylindrical Tube Type Ionic Polymer Metal Composite (Ipmc), Benjamin Mead May 2013

Closed Loop Control Of A Cylindrical Tube Type Ionic Polymer Metal Composite (Ipmc), Benjamin Mead

UNLV Theses, Dissertations, Professional Papers, and Capstones

The goal of this research is to provide a framework for the integration of tube type, cylindrical Ionic Polymer Metal-Composite (IPMC) into conventional devices. IPMCs are one of the most widely used types of electro-active polymer actuator, due to their low electric driving potential and large deformation range. For this research a tube type IPMC was investigated. This IPMC has a circular cross section with four separate electrodes on its surface and a hole through the middle. The four electrodes allow for biaxial bending and accurate control of the tip location. One of the main advantages of using this type ...


Modeling The Zimmer Fitmore And Ml Taper Implantation, Tyler Kazuo Franklin May 2013

Modeling The Zimmer Fitmore And Ml Taper Implantation, Tyler Kazuo Franklin

Master's Theses and Project Reports

With more young adults requiring total hip

arthroplasties the need for bone saving implants becomes

more important. The Zimmer Fitmore is a new bone saving

implant that utilizes an implantation technique that

reduces the damage to the muscle tissue allowing for

patients to have a short recovery time as well as a new

design that allows it to rest on the medial cortex. There

has been anecdotal evidence that this device leads to early

revision within six months of implantation due to failures

occurring in the medial cortex. The main goal of this

study was to computationally model the Zimmer ...


Sol-Gel Derived Biodegradable And Bioactive Organic-Inorganic Hybrid Biomaterials For Bone Tissue Engineering, Bedilu A. Allo Apr 2013

Sol-Gel Derived Biodegradable And Bioactive Organic-Inorganic Hybrid Biomaterials For Bone Tissue Engineering, Bedilu A. Allo

Electronic Thesis and Dissertation Repository

Treatments of bone injuries and defects have been largely centered on replacing the lost bone with tissues of allogeneic or xenogeneic sources as well as synthetic bone substitutes, which in all lead to limited degree of structural and functional recovery. As a result, tissue engineering has emerged as a viable technology to regenerate the structures and therefore recover the functions of bone tissue rather than replacement alone. Hence, the current strategies of bone tissue engineering and regeneration rely on bioactive scaffolds to mimic the natural extracellular matrix (ECM) as templates onto which cells attach, multiply, migrate and function.

In this ...


Multifunctional Nanoparticles In Cancer: In Vitro Characterization, In Vivo Distribution, Tingjun Lei Mar 2013

Multifunctional Nanoparticles In Cancer: In Vitro Characterization, In Vivo Distribution, Tingjun Lei

FIU Electronic Theses and Dissertations

A novel biocompatible and biodegradable polymer, termed poly(Glycerol malate co-dodecanedioate) (PGMD), was prepared by thermal condensation method and used for fabrication of nanoparticles (NPs). PGMD NPs were prepared using the single oil emulsion technique and loaded with an imaging/hyperthermia agent (IR820) and a chemotherapeutic agent (doxorubicin, DOX). The size of the void PGMD NPs, IR820-PGMD NPs and DOX-IR820-PGMD NPs were approximately 90 nm, 110 nm, and 125 nm respectively. An acidic environment (pH=5.0) induced higher DOX and IR820 release compared to pH=7.4. DOX release was also enhanced by exposure to laser, which increased the ...


Bacterial Growth On Metal And Non-Metal Surfaces In A Static Bioreactor, Rolan Yuk Loong Liong Mar 2013

Bacterial Growth On Metal And Non-Metal Surfaces In A Static Bioreactor, Rolan Yuk Loong Liong

Master's Theses and Project Reports

Research was conducted to observe bacterial growth on the surface of metals in a static bioreactor. Metal and non-metal samples were subjected to bacterial exposure (1 day and 9 days). The metal samples were surface treated prior to bacterial exposure. The microstructures of the surface treated samples were analyzed by optical microscopy. After exposure, the microstructures of the samples were analyzed by scanning electron microscopy (SEM). The analysis suggested that microbial attachment on the surface was related to the underlying microstructure of steel. The preferential attachment of microbes could potentially be influenced by cathodic and anodic regions created by the ...