Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Biomedical Engineering and Bioengineering

Integrated Analysis Of Hydrothermal Flow Through Pretreatment, Veronique Archambault-Leger, Xiongjun Shao, Lee R. Lynd Jul 2012

Integrated Analysis Of Hydrothermal Flow Through Pretreatment, Veronique Archambault-Leger, Xiongjun Shao, Lee R. Lynd

Dartmouth Scholarship

Background:

The impact of hydrothermal flowthrough (FT) pretreatment severity on pretreatment and solubilization performance metrics was evaluated for three milled feedstocks (corn stover, bagasse, and poplar) and two conversion systems (simultaneous saccharification and fermentation using yeast and fungal cellulase, and fermentation by Clostridium thermocellum).

Results:

Compared to batch pretreatment, FT pretreatment consistently resulted in higher XMG recovery, higher removal of non-carbohydrate carbon and higher glucan solubilization by simultaneous saccharification and fermentation (SSF). XMG recovery was above 90% for FT pretreatment below 4.1 severity but decreased at higher severities, particularly for bagasse. Removal of non-carbohydrate carbon during FT pretreatment increased …


Tissue Engineering A Blood Vessel Mimic While Monitoring Contamination Through Sterility Assurance Testing, Navid Djassemi Jul 2012

Tissue Engineering A Blood Vessel Mimic While Monitoring Contamination Through Sterility Assurance Testing, Navid Djassemi

Master's Theses

Tissue Engineering A Blood Vessel Mimic While Monitoring Contamination Through Sterility Assurance Testing

Navid Djassemi

Tissue engineering blood vessel mimics has been proposed as a method to analyze the endothelial cell response to intravascular devices that are used in today’s clinical settings for the treatment of cardiovascular disease. Thus, the development of in vitro blood vessel mimics (BVMs) in Cal Poly’s Tissue Engineering Lab has introduced the possibility of assessing the characteristics of cellular response to past, present, and future intravascular devices that aim at treating coronary artery disease.

This thesis aimed at improving the methods and procedures utilized in …