Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Biomedical Engineering and Bioengineering

Automated Methods For Fiber Diameter Measurement Of Fibrous Scaffolds, Anna Bulysheva Dec 2009

Automated Methods For Fiber Diameter Measurement Of Fibrous Scaffolds, Anna Bulysheva

Theses and Dissertations

The purpose of this work was to develop an automated method of measuring fiber diameters of electrospun scaffolds from scanning electron microscopy images of these scaffolds. Several automated methods were developed and evaluated by comparison to known values and data obtained via the standard manual method. Simulated images with known diameters were used as test images to evaluate the accuracy of each measurement technique. Eight scanning electron microscopy images were also used for the evaluation of the automated methods compared to the standard manual method. All diameter measurements were made in pixels. Five new automated methods coded in MATLAB were ...


Tissue Engineering Cellularized Silk-Based Ligament Analogues, Scott Sell Jun 2009

Tissue Engineering Cellularized Silk-Based Ligament Analogues, Scott Sell

Theses and Dissertations

The resurgence, and eventual rise to prominence in the field of tissue engineering, that electrospinning has experienced over the last decade speaks to the simplicity and adaptability of the process. Electrospinning has been used for the fabrication of tissue engineering scaffolds intended for use in nearly every part of the human body: blood vessel, cartilage, bone, skin, nerve, connective tissue, etc. Diverse as the aforementioned tissues are in both form and function, electrospinning has found a niche in the repair of each due to its capacity to consistently create non-woven structures of fibers ranging from nano-to-micron size in diameter. These ...


A Tissue Engineering Approach To Anterior Cruciate Ligament, Kristofer Sinclair May 2009

A Tissue Engineering Approach To Anterior Cruciate Ligament, Kristofer Sinclair

All Dissertations

Ruptures of the anterior cruciate ligament (ACL) are the most frequent of injuries to the knee due to its role in preventing anterior translation of the tibia. It is estimated that as many as 200,000 Americans per year will suffer from a ruptured ACL, resulting in management costs on the order of 5 billion dollars. Without treatment these patients are unable to return to normal activity, as a consequence of the joint instability found within the ACL deficient knee.
Over the last thirty years, a variety of non-degradable, synthetic fibers have been evaluated for their use in ACL reconstruction ...


Development Of An In-Vitro Tissue Engineered Blood Vessel Mimic Using Human Large Vessel Cell Sources, Dimitri E. Delagrammaticas May 2009

Development Of An In-Vitro Tissue Engineered Blood Vessel Mimic Using Human Large Vessel Cell Sources, Dimitri E. Delagrammaticas

Master's Theses and Project Reports

Tissue engineering is an emerging field that offers novel and unmatched potential medical therapies and treatments. While the vast aim of tissue engineering endeavors is to provide clinically implantable constructs, secondary applications have been developed to utilize tissue-engineered constructs for in-vitro evaluation of devices and therapies. Specifically, in-vitro blood vessel mimics (BVM) have been developed to create a bench-top blood vessel model using human cells that can be used to test and evaluate vascular disease treatments and intravascular devices. Previous BVM work has used fat derived human microvascular endothelial cells (EC) sodded on an ePTFE scaffold. To create a more ...


Structural And Functional Considerations In The Design Of Collagen-Based Electrospun Scaffolds, Chantal Ayres Apr 2009

Structural And Functional Considerations In The Design Of Collagen-Based Electrospun Scaffolds, Chantal Ayres

Theses and Dissertations

Electrospinning can be used to selectively process a variety of natural and synthetic polymers into highly porous scaffolds composed of nano-to-micron diameter fibers. This process shows great potential as a gateway to the development of physiologically relevant tissue engineering scaffolds. In this study we examine the structural and functional considerations regarding electrospun scaffolds for dermal template applications using novel quantification techniques. In order to characterize scaffold structure, a technique utilizing the fast Fourier transform was developed to systematically quantify fiber alignment and evaluate how different electrospinning parameters impact the structure and material properties of an electrospun scaffold. Gelatin was suspended ...


Topography, Extracellular Matrix Proteins, Secreted Molecules And Endogenous Electric Fields: Cues That Influence The Differentiation Of Neural Progenitor Cells, Carlos Atico Ariza Jan 2009

Topography, Extracellular Matrix Proteins, Secreted Molecules And Endogenous Electric Fields: Cues That Influence The Differentiation Of Neural Progenitor Cells, Carlos Atico Ariza

Graduate Theses and Dissertations

Neural progenitor cells (NPCs) have the potential to be used as a cell based therapy to treat Alzheimer disease, spinal cord injury and other significant damage to the central nervous system. In order to utilize the therapeutic potential of NPCs, we must first learn to control their migration, proliferation, differentiation and growth. An ideal methodology would entail directed stem cell migration to damaged tissue; proliferation until the target is reached; differentiation into the most beneficial phenotype; and integration of cells into the existing tissue. A myriad of stimulants that alter NPC behavior, exist in vivo. Characterizing the individual contributions of ...