Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Biomedical Engineering and Bioengineering

Nanoengineered Templates For Controlled Delivery Of Bioactive Compounds, Nalinkanth Ghone Veerabadran Jul 2008

Nanoengineered Templates For Controlled Delivery Of Bioactive Compounds, Nalinkanth Ghone Veerabadran

Doctoral Dissertations

The significance of any drugs, therapeutic proteins, or any bioactive compounds, is based not only on their effects on diseases but also on how specifically, how readily, how controllable and how prolonged their effects on the disease without having any side effects. Thus the techniques involved in the drug encapsulation and its controlled release for a longer duration of time form one of the important processes of drug reformulation. In recent years nanoparticles have created overwhelming attention for delivering drugs by nanoencapsulation. The smaller size of nanoparticles has longer circulation time and higher cellular uptake when compared with larger size ...


A Simulation Of The Neural Action Potential Under The Influence Of Acetylcholinesterase Inhibitors Modeled In The Neuromuscular Junction, Frank Jenkins Jul 2008

A Simulation Of The Neural Action Potential Under The Influence Of Acetylcholinesterase Inhibitors Modeled In The Neuromuscular Junction, Frank Jenkins

Doctoral Dissertations

The rise of terrorism has created an interest in better ways to detect when humans are exposed to neurotoxins, especially nerve gases developed for military use, most of which are acetylcholinesterase inhibitors. Many current methods of detection are based on mass spectrometry, a method that is cumbersome and not particularly robust when used as an early warning method. The detection of acetylcholinesterase inhibitors would benefit from a combined model of the processes occurring in the neuromuscular junction between the presynaptic action potential and the motor end-plate action potential that includes the kinetics of acetylcholine and acetylcholinesterase in the synaptic cleft ...


Poly(Ethylenedioxythiophene) Based Electronic Devices For Sensor Applications, Jie Liu Jul 2008

Poly(Ethylenedioxythiophene) Based Electronic Devices For Sensor Applications, Jie Liu

Doctoral Dissertations

Organic electronic devices, based on Poly (3,4-ethylenedioxythiophene)-Poly (styrene sulfonic acid) (PEDOT-PSS) as the active layer for sensor applications, have been studied. Two sets of sensors have been developed. In one case, sensors consisting of PEDOT-PSS resistors have been realized and demonstrated for soil moisture monitoring. The resistor model for the soil moisture sensor enables the sensor device to be fabricated at low cost and easily tested with a simple structure. Unlike the large dimension device used in Time Domain Reflectometry (TDR), the sensors are small and are capable of capturing microscale behavior of moisture in soil which is ...


Acquisition Of Cardiac Control Parameters From Whole Vagus Nerve Recordings, Marcia A. Pool Apr 2008

Acquisition Of Cardiac Control Parameters From Whole Vagus Nerve Recordings, Marcia A. Pool

Doctoral Dissertations

Heart rate varies continuously depending on the amount of activity being performed or the emotional state of an individual. Both branches of the autonomic nervous system work to alter heart rate depending on the needs of the body. While healthy individuals are capable of altering their heart rate, individuals with certain types of heart disease do not have this ability. For these individuals, cardiac pacemakers are used to alter heart rate. Cardiac pacemakers use sensors to determine the pacing frequency for the heart; however, there is no current optimum sensor. In order to discover a better sensor, this study investigated ...


Fabrication Of Bioactive Osteogenic Controlled-Release Systems, Cellular Platforms, And Cellular Capsules Using Layer -By -Layer Nanoassembly, Skylar Stewart-Clark Apr 2008

Fabrication Of Bioactive Osteogenic Controlled-Release Systems, Cellular Platforms, And Cellular Capsules Using Layer -By -Layer Nanoassembly, Skylar Stewart-Clark

Doctoral Dissertations

There is an ever-increasing awareness that the field of tissue engineering offers many potential solutions to clinical problems. While advances along these lines have been made, the design and implementation of an "off the shelf" tissue is yet to be realized. Thus, the objectives of this work were largely aimed at the design and fabrication of biocompatible, bioactive structures which could be integrated into existing biomaterial products.

The electrostatic layer-by-layer (LbL) self-assembly technique was used to incorporate biologically relevant molecules within controlled release systems, cell culture platforms, and 3-D cellular capsules. Two delivery systems were investigated to determine the release ...