Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Biomedical Engineering and Bioengineering

In Vitro Bioreactor For Mechanical Control And Characterization Of Tissue Constructs, Samuel Coeyman Dec 2022

In Vitro Bioreactor For Mechanical Control And Characterization Of Tissue Constructs, Samuel Coeyman

All Dissertations

Heart failure (HF) currently affects over 6 million Americans, 50% of whom die within 5 years of their initial diagnosis. A major contributor to the onset of HF is cardiac fibrosis in the myocardium, which arises when fibroblasts (FBs) are activated in response to heightened mechanical stress from overload conditions like hypertension. Activated FBs remodel the extracellular matrix (ECM) and secrete ECM proteins including collagen. FB remodeling has been studied in the past by applying forces and/or deformations to three-dimensional, cell-seeded gels and tissue constructs in vitro. Unfortunately, previous stretching platforms have traditionally not enabled mechanical property assessment to be …


Fluid Delivery System For A Cell Culture On A Microfluidic Chip, Austin J. Roeder, Colleen A. Richards, Emily A. Matteson Mar 2019

Fluid Delivery System For A Cell Culture On A Microfluidic Chip, Austin J. Roeder, Colleen A. Richards, Emily A. Matteson

Biomedical Engineering

This project report provides a description of the progress made in the development of a fluid delivery system for a microfluidic cell culture on a chip. The system is intended to be used in a humidified incubator in a university laboratory and the fluid delivery system is required to exist and operate within that incubator for extended periods of time. Therefore, the system will be gravity-driven and contain no electronic components. The key specification of the system is to provide fluid flow at a constant velocity.

After manufacturing and testing the device, all specifications were met except for the fluid …


Humidity Effect On The Structure Of Electrospun Core-Shell Pcl-Peg Fibers For Tissue Regeneration Applications, Adam P. Golin Apr 2014

Humidity Effect On The Structure Of Electrospun Core-Shell Pcl-Peg Fibers For Tissue Regeneration Applications, Adam P. Golin

Electronic Thesis and Dissertation Repository

With the aim of creating a biodegradable scaffold for tympanic membrane (TM) tissue regeneration, core-shell nanofibers composed of a poly(caprolactone) shell and a poly(ethylene glycol) core were created using a coaxial electrospinning technique. In order to create fibers with an optimal core-shell morphology, the effect of relative humidity (RH) on the core-shell nanofibers was systematically studied, with a FITC-BSA complex encapsulated in the core to act as a model protein. The core-shell nanofibers were electrospun at relative humidity values of 20, 25, 30, and 40% RH within a glove box outfitted for humidity control. The core-shell morphology of the fibers …


Design Of Controlled Environment For Tissue Engineering, Malcolm Gerald Lapera Feb 2014

Design Of Controlled Environment For Tissue Engineering, Malcolm Gerald Lapera

Master's Theses

Design of Controlled Environment for Tissue Engineering

Malcolm Lapera

Tissue engineering aims at relieving the need for donor tissue and organs by developing a process of creating viable tissues in the laboratory setting. With over 120,000 people awaiting a transplant, the need for generating tissue engineered organs is very large [3]. In order for organs to be engineered, a few issues need to be overcome. A work space that both creates an environment which maintains cell viability over an extended period of time as well as accommodates the necessary fabrication equipment will be needed to further tissue engineering research. Therefore, …


Development And Characterization Of An In-House Custom Bioreactor For The Cultivation Of A Tissue Engineered Blood-Brain Barrier, Amin Hadi Mirzaaghaeian Jul 2012

Development And Characterization Of An In-House Custom Bioreactor For The Cultivation Of A Tissue Engineered Blood-Brain Barrier, Amin Hadi Mirzaaghaeian

Master's Theses

The development of treatments for neurological disorders such as Alzheimer’s and Parkinson’s disease begins by understanding what these diseases affect and the consequences of further manifestation. One particular region where these diseases can produce substantial problems is the blood-brain barrier (BBB). The BBB is the selective diffusion barrier between the circulating blood and the brain. The barrier’s main function is to maintain CNS homeostasis and protect the brain from the extracellular environment. The progression of BBB research has advanced to the point where many have modeled the BBB in vitro with aims of further characterizing and testing the barrier. Particularly, …