Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Biomedical Engineering and Bioengineering

Development And Application Of 3d Kinematic Methodologies For Biomechanical Modelling In Adaptive Sports And Rehabilitation, Anne Marie Severyn May 2022

Development And Application Of 3d Kinematic Methodologies For Biomechanical Modelling In Adaptive Sports And Rehabilitation, Anne Marie Severyn

All Dissertations

Biomechanical analysis is widely used to assess human movement sciences, specifically using three-dimensional motion capture modelling. There are unprecedented opportunities to increase quantitative knowledge of rehabilitation and recreation for disadvantaged population groups. Specifically, 3D models and movement profiles for human gait analysis were generated with emphasis on post-stroke patients, with direct model translation to analyze equivalent measurements while horseback riding in use of the alternative form of rehabilitation, equine assisted activities and therapies (EAAT) or hippotherapy (HPOT). Significant improvements in gait symmetry and velocity were found within an inpatient rehabilitation setting for patients following a stroke, and the developed movement …


Intermittent Theta Burst Stimulation: Application To Spinal Cord Injury Rehabilitation And Computational Modeling, Neil Mittal Jan 2021

Intermittent Theta Burst Stimulation: Application To Spinal Cord Injury Rehabilitation And Computational Modeling, Neil Mittal

Theses and Dissertations

Loss of motor function from spinal cord injuries (SCI) results in loss of independence. Rehabilitation efforts are targeted to enhance the ability to perform activities of daily living (ADLs), but outcomes from physical therapy alone are often insufficient. Neuromodulation techniques that induce neuroplasticity may push the limits on recovery. Neuromodulation by intermittent theta burst transcranial magnetic stimulation (iTBS) induces neuroplasticity by increasing corticomotor excitability, though this has most frequently been studied with motor targets and on individuals not in need of rehabilitation. Increased corticomotor excitability is associated with motor learning. The response to iTBS, however, is highly variable and unpredictable, …


The Effect Of Intermittent Theta Burst Stimulation On Biceps Corticomotor Excitability In Non-Impaired Individuals And Individuals With Tetraplegia, Blaize Majdic Jan 2020

The Effect Of Intermittent Theta Burst Stimulation On Biceps Corticomotor Excitability In Non-Impaired Individuals And Individuals With Tetraplegia, Blaize Majdic

Theses and Dissertations

Neuromodulation of the primary motor cortex (M1) in pair with physical therapy may be a promising method for improving motor outcomes after spinal cord injury (SCI). Increased excitability of the corticospinal motor pathways (i.e. corticomotor excitability) has shown to be associated with improved motor learning and skill acquisition. Intermittent theta burst stimulation (iTBS) is a form of non-invasive brain stimulation which can increase corticomotor excitability, as measured by an increase in the amplitude of motor evoked potentials (MEPs). However, the ability for iTBS to increase the corticomotor excitability of proximal muscles such as the biceps, and muscles affected by spinal …


Quantifying The Outcomes Of A Virtual Reality (Vr)-Based Gamified Neck Rehabilitation, Shahan Salim Aug 2019

Quantifying The Outcomes Of A Virtual Reality (Vr)-Based Gamified Neck Rehabilitation, Shahan Salim

Electronic Thesis and Dissertation Repository

Neck pain is a major global public health concern and adds a significant financial burden to both the healthcare system as well as people suffering from it. Additionally, it presents measurement and evaluation challenges for clinicians as well as adherence challenges and treatment barriers for the patients. We have developed a virtual reality (VR)-based video game that can be used to capture outcomes that may aid in the assessment and treatment of neck pain. We investigated: (i) performance metrics of overall accuracy, accuracy based on movement difficulty, duration, and total envelope of movement; (ii) stability across sessions; (iii) accuracy across …


Design And Analysis Of A 3d-Printed, Thermoplastic Elastomer (Tpe) Spring Element For Use In Corrective Hand Orthotics, Kevin Thomas Richardson Jan 2018

Design And Analysis Of A 3d-Printed, Thermoplastic Elastomer (Tpe) Spring Element For Use In Corrective Hand Orthotics, Kevin Thomas Richardson

Theses and Dissertations--Mechanical Engineering

This thesis proposes an algorithm that determine the geometry of 3D-printed, custom-designed spring element bands made of thermoplastic elastomer (TPE) for use in a wearable orthotic device to aid in the physical therapy of a human hand exhibiting spasticity after stroke. Each finger of the hand is modeled as a mechanical system consisting of a triple-rod pendulum with nonlinear stiffness at each joint and forces applied at the attachment point of each flexor muscle. The system is assumed quasi-static, which leads to a torque balance between the flexor tendons in the hand, joint stiffness and the design force applied to …


Development Of An Eeg Brain-Machine Interface To Aid In Recovery Of Motor Function After Neurological Injury, Elizabeth Salmon Jan 2013

Development Of An Eeg Brain-Machine Interface To Aid In Recovery Of Motor Function After Neurological Injury, Elizabeth Salmon

Theses and Dissertations--Biomedical Engineering

Impaired motor function following neurological injury may be overcome through therapies that induce neuroplastic changes in the brain. Therapeutic methods include repetitive exercises that promote use-dependent plasticity (UDP), the benefit of which may be increased by first administering peripheral nerve stimulation (PNS) to activate afferent fibers, resulting in increased cortical excitability. We speculate that PNS delivered only in response to attempted movement would induce timing-dependent plasticity (TDP), a mechanism essential to normal motor learning. Here we develop a brain-machine interface (BMI) to detect movement intent and effort in healthy volunteers (n=5) from their electroencephalogram (EEG). This could be used in …


Digital Human Models Of People With Disabilities, Ron Hamameh Jan 2010

Digital Human Models Of People With Disabilities, Ron Hamameh

Wayne State University Theses

The current state-of-the-art in Digital Human Modeling (DHM) allows for full simulation and analysis of any task a person is required to perform at home, at work, in the military, in space, in sports, etc. The problem is that the software is missing a very important population: people with physical disabilities. What modifications and enhancements must be made to existing, commercially available DHM software to include this population?


Effects Of Diabetes And Aging On Posture And Acceleration Thresholds During Lateral Translations, Samantha Jean Richerson Apr 2003

Effects Of Diabetes And Aging On Posture And Acceleration Thresholds During Lateral Translations, Samantha Jean Richerson

Doctoral Dissertations

Research objectives. One source of falls in the elderly may be an inability to sufficiently adjust to transient postural perturbations or slips. Identifying useful predictors of fall potential, as well as factors that affect the ability of an individual to detect a movement of the standing support surface may provide insight into postural stability and methods to increase stability in elders. To do this, acceleration thresholds to short, precise, lateral platform translations and the resultant psychophysical responses of adults with early Type 2 diabetes to age-matched controls and young adults were measured.

Methods. Using an innovative SLIP-FALLS platform, …