Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Biomedical Engineering and Bioengineering

Development And Application Of 3d Kinematic Methodologies For Biomechanical Modelling In Adaptive Sports And Rehabilitation, Anne Marie Severyn May 2022

Development And Application Of 3d Kinematic Methodologies For Biomechanical Modelling In Adaptive Sports And Rehabilitation, Anne Marie Severyn

All Dissertations

Biomechanical analysis is widely used to assess human movement sciences, specifically using three-dimensional motion capture modelling. There are unprecedented opportunities to increase quantitative knowledge of rehabilitation and recreation for disadvantaged population groups. Specifically, 3D models and movement profiles for human gait analysis were generated with emphasis on post-stroke patients, with direct model translation to analyze equivalent measurements while horseback riding in use of the alternative form of rehabilitation, equine assisted activities and therapies (EAAT) or hippotherapy (HPOT). Significant improvements in gait symmetry and velocity were found within an inpatient rehabilitation setting for patients following a stroke, and the developed movement …


Development Of A Novel Haptic Feedback System For Gait Training Applications, Mohsen Alizadeh Noghani Aug 2021

Development Of A Novel Haptic Feedback System For Gait Training Applications, Mohsen Alizadeh Noghani

Electronic Theses and Dissertations

Until recently, study and correction of motor or gait functions required costly sensors and measurement setups (e.g., optical motion capture systems) which were only available in laboratories or clinical environments. However, due to (1) the growing availability and affordability of inertial measurement units (IMUs) with high accuracy, and (2) progress in wireless, high bandwidth, and energy-efficient networking technologies such as Bluetooth Low Energy (BLE), it is now possible to measure and provide feedback in real-time for biomechanical parameters outside of those specialized settings. To enable gait training without an expert who can provide verbal feedback, augmented feedback, which is divided …


Development And Control Of A 3-Dof Exoskeleton Robot For Forearm And Wrist Rehabilitation, Tanvir Ahmed May 2020

Development And Control Of A 3-Dof Exoskeleton Robot For Forearm And Wrist Rehabilitation, Tanvir Ahmed

Theses and Dissertations

The research conducted under this project directly contributes to the development of a forearm and wrist rehabilitation robot (UWM-FWRR). Upper extremity impairment following stroke, trauma, sports injuries, occupational injuries, spinal cord injuries, and orthopaedic injuries results in significant deficits in hand manipulation and the performance of everyday tasks. Strokes affect nearly 800,000 people in the United States each year. Rehabilitation programs are the main method of promoting functional recovery in individuals with finger impairment. The conventional therapeutic approach requiring a long commitment by both the clinician and the patient. Robotic devices (RDs) are novel and rapidly expanding technologies in hand …


A Series-Elastic Robot For Back-Pain Rehabilitation, Elhussein Shata Jan 2020

A Series-Elastic Robot For Back-Pain Rehabilitation, Elhussein Shata

Electronic Theses and Dissertations

Robotics research has been broadly expanding into various fields during the past decades. It is widely spread and best known for solving many technical necessities in different fields. With the rise of the industrial revolution, it upgraded many factories to use industrial robots to prevent the human operator from dangerous and hazardous tasks. The rapid development of application fields and their complexity have inspired researchers in the robotics community to find innovative solutions to meet the new desired requirements of the field. Currently, the creation of new needs outside the traditional industrial robots are demanding robots to attend to the …


Predictive Simulations Of Gait And Their Application In Prosthesis Design, Anne D. Koelewijin Jan 2018

Predictive Simulations Of Gait And Their Application In Prosthesis Design, Anne D. Koelewijin

ETD Archive

Predictive simulations predict human gait by solving a trajectory optimization problem by minimizing energy expenditure. These simulations could predict the effect of a prosthesis on gait before its use. This dissertation has four aims, to show the application of predictive simulations in prosthesis design and to improve the quality of predictive simulations. Aim 1 was to explain joint moment asymmetry in the knee and hip in gait of persons with a transtibial amputation (TTA gait). Predictive simulations showed that an asymmetric gait required less effort. However, a small effort increase yielded a gait with increased joint moment symmetry and reduced …


Design And Analysis Of A 3d-Printed, Thermoplastic Elastomer (Tpe) Spring Element For Use In Corrective Hand Orthotics, Kevin Thomas Richardson Jan 2018

Design And Analysis Of A 3d-Printed, Thermoplastic Elastomer (Tpe) Spring Element For Use In Corrective Hand Orthotics, Kevin Thomas Richardson

Theses and Dissertations--Mechanical Engineering

This thesis proposes an algorithm that determine the geometry of 3D-printed, custom-designed spring element bands made of thermoplastic elastomer (TPE) for use in a wearable orthotic device to aid in the physical therapy of a human hand exhibiting spasticity after stroke. Each finger of the hand is modeled as a mechanical system consisting of a triple-rod pendulum with nonlinear stiffness at each joint and forces applied at the attachment point of each flexor muscle. The system is assumed quasi-static, which leads to a torque balance between the flexor tendons in the hand, joint stiffness and the design force applied to …


The Development Of A Prosthetic Training Software For Upper Limb Amputees, Tyler Kayne Sullins Jun 2016

The Development Of A Prosthetic Training Software For Upper Limb Amputees, Tyler Kayne Sullins

USF Tampa Graduate Theses and Dissertations

The purpose of this study was to develop an intuitive software that aids in the field of prosthetic training and rehabilitation by creating an individualized visualization of joint angles. This software is titled “the prosthetic training software (PTS) for individualized joint angle representation”, and it enables the individualized portrayal of predicted or pre-recorded joint angles. The PTS is an intuitive program for clinicians and prosthesis users that produces an animation of a virtual avatar reflecting the user’s segment lengths and amputation for rehabilitation and training purposes.

The PTS consists of a graphical user interface (GUI) and a 3D visualization of …


A Continous Rotary Actuation Mechanism For A Powered Hip Exoskeleton, Matthew C. Ryder Jul 2015

A Continous Rotary Actuation Mechanism For A Powered Hip Exoskeleton, Matthew C. Ryder

Masters Theses

This thesis presents a new mechanical design for an exoskeleton actuator to power the sagittal plane motion in the human hip. The device uses a DC motor to drive a Scotch yoke mechanism and series elasticity to take advantage of the cyclic nature of human gait and to reduce the maximum power and control requirements of the exoskeleton. The Scotch yoke actuator creates a position-dependent transmission that varies between 4:1 and infinity, with the peak transmission ratio aligned to the peak torque periods of the human gait cycle. Simulation results show that both the peak and average motor torque can …