Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 14 of 14

Full-Text Articles in Biomedical Engineering and Bioengineering

Zein And Lignin-Based Nanoparticles As Delivery Systems: Pesticide Release And Nanoparticle Health Impact On Soybean Plants, Fallon Polette Salinas Gonzalez Jan 2021

Zein And Lignin-Based Nanoparticles As Delivery Systems: Pesticide Release And Nanoparticle Health Impact On Soybean Plants, Fallon Polette Salinas Gonzalez

LSU Doctoral Dissertations

This research examined the effect of biodegradable, polymeric, lignin-based nanoparticles (LNPs, 113.8±3.4, negatively charged) and zein nanoparticles (ZNP, 141.6±3.9, positively charged) on soybean plant health. The LNPs were synthesized from lignin, covalently linked to poly(lactic-co-glycolic) acid by emulsion evaporation. ZNPs were synthesized by nanoprecipitation. Soybeans grown hydroponically were treated with three concentrations (0.02, 0.2, and 2 mg/ml) of NPs at 28 days after germination. The effect of ZNPs and LNPs on plant health was determined through analysis of root and stem length, chlorophyll concentration, dry biomass of roots and stem, as well as carbon, nitrogen, and micronutrient absorption after 1, …


Development Of Fluorescent Hyaluronic Acid Nanoparticles For Intraoperative Tumor Detection, Nicholas E. Wojtynek May 2020

Development Of Fluorescent Hyaluronic Acid Nanoparticles For Intraoperative Tumor Detection, Nicholas E. Wojtynek

Theses & Dissertations

Surgical resection remains to be the primary treatment for the majority of solid tumors, including breast cancer. The complete removal of the primary tumor, local metastases, and metastatic lymph nodes dramatically improve a patient’s treatment outcome and prognosis. Nevertheless, surgeons are limited to tactile and visual cues in distinguishing malignant and healthy tissue. This can result in a positive surgical margin (PSM), which occurs when tumor goes undetected and is left behind in the surgical cavity. PSMs decreases a patient’s prognosis and necessitate additional treatment in the form of surgery, radiation, and chemotherapy. An emerging imaging modality, known as fluorescence-guided …


Formulation And Validation Of Nanoparticle Controlled Delivery For Chemotherapeutic Drug Products, Shani L. Levit Jan 2020

Formulation And Validation Of Nanoparticle Controlled Delivery For Chemotherapeutic Drug Products, Shani L. Levit

Theses and Dissertations

Taxol, a formulation of paclitaxel (PTX), is one of the most widely used anticancer drugs, particularly for treating recurring ovarian carcinomas following surgery. Clinically, PTX is used in combination with other drugs such as lapatinib (LAP) to increase treatment efficacy. Delivering drug combinations with nanoparticles has the potential to improve chemotherapy outcomes. In this study, we use Flash NanoPrecipitation, a rapid, scalable process to encapsulate weakly hydrophobic drugs (logP in vitro. Encapsulating either PTX or LAP into nanoparticles increases drug potency. When PTX and LAP are co-loaded in the same nanoparticle, they have a synergistic effect that is greater than …


Investigation On Nanoparticle Based Combination Therapy For Targeted Cancer Treatment, Muhammad Raisul Abedin Jan 2020

Investigation On Nanoparticle Based Combination Therapy For Targeted Cancer Treatment, Muhammad Raisul Abedin

Doctoral Dissertations

“The current treatment methods in cancer are associated with toxicity in healthy tissues, partial therapeutic response, drug resistance and finally recurrence of the disease. The cancer drugs are challenged by non-specific binding, undesired toxicity in healthy cells, low therapeutic index and finally poor therapeutic outcome. In this work, a targeted nanoscale therapeutic system Antibody Drug Nanoparticle (ADN) was engineered to selectively inhibit the breast cancer cell growth with reduced toxicity in healthy cells. The ADNs were designed by synthesizing rod shaped anoparticles using pure chemotherapeutic drug and covalently conjugating a therapeutic monoclonal antibody (mAb) on the surface of the drug …


The Design, Fabrication, And Characterization Of Nanoparticle-Protein Interactions For Theranostic Applications, Wai Hei Tse Aug 2017

The Design, Fabrication, And Characterization Of Nanoparticle-Protein Interactions For Theranostic Applications, Wai Hei Tse

Electronic Thesis and Dissertation Repository

Theranostics, a combination of therapeutics and diagnostics, spans a spectrum of research areas to provide new opportunities in developing new healthcare technologies and medicine at affordable prices. Through employing a personalized medicine approach, biotechnology can be tailored to the needs of an individual. Applications of theranostics include drug delivery carriers capable of sustained drug release and targeted delivery, biosensors with high sensitivity and selectivity, and diagnostic relevant entities that can be incorporated into the former technologies. Nanotechnology provides a suitable foundation for theranostics to build upon due to material-based properties; magnetism, biocompatibility, and quantum effects to name a few. Purpose …


Mechanism Of Interaction Of Peptide Modified Nanoparticles With Porphyromonas Gingivalis., Ankita Jain Dec 2016

Mechanism Of Interaction Of Peptide Modified Nanoparticles With Porphyromonas Gingivalis., Ankita Jain

Electronic Theses and Dissertations

Studies suggest that P. gingivalis functions as a keystone pathogen and interacts with primary colonizers in the supragingival biofilm such as S. gordonii. This interaction contributes to the initial colonization of the oral cavity by P. gingivalis and thus represents a potential target for therapeutic intervention. We have identified a peptide (BAR) derived from the streptococcal SspB protein that functions to inhibit P. gingivalis adherence to S. gordonii. In addition, we showed that nanoparticles (NPs) functionalized with BAR inhibit this interaction more potently than free soluble peptide, possibly by promoting interaction with P. gingivalis at higher valency than …


Graphene Quantum Dots-Based Drug Delivery For Ovarian Cancer Therapy, Yiru Qin May 2016

Graphene Quantum Dots-Based Drug Delivery For Ovarian Cancer Therapy, Yiru Qin

USF Tampa Graduate Theses and Dissertations

Ovarian cancer, one of the most dreadful malignancies of the female reproductive system, poses a lethal threat to women worldwide. In this dissertation, the objective was to introduce a novel type of graphene quantum dots (GQDs) based nano-sized drug delivery systems (DDS) for ovarian cancer treatment. As a starting point, the facile synthesis method of the GQDs was established. Subsequently, the targeting ligand,folic acid (FA), was conjugated to GQDs. Next, a FDA approved chemotherapeutic drug, Doxorubicin (DOX), was loaded to form the GQDs-FA-DOX nano-conjugation as the DDS. Moreover, the uptake profile and anti-cancer effect of the GQDs-FA-DOX were validated in …


Synthesis And Functional Evaluation Of Peptide Modified Poly (Lactic-Co-Glycolic Acid) Nanoparticles To Inhibit Porphyromonas Gingivalis Biofilm Formation., Paridhi Kalia Dec 2015

Synthesis And Functional Evaluation Of Peptide Modified Poly (Lactic-Co-Glycolic Acid) Nanoparticles To Inhibit Porphyromonas Gingivalis Biofilm Formation., Paridhi Kalia

Electronic Theses and Dissertations

Periodontal disease is an oral inflammatory disorder that afflicts roughly 46% of the adults in the U.S. Currently, treatment of periodontal disease involves the removal of plaque from the gingival pocket (with possible antibiotic treatment) and if necessary, gingival surgery. To our knowledge, no therapeutic approach exists that promotes host-biofilm homeostasis by limiting pathogen recolonization of the oral cavity after prophylaxis or treatment. The interaction of the pathogen Porphyromonas gingivalis with commensal streptococci is critical for initiation of periodontitis and represents a target for limiting P. gingivalis colonization of the oral cavity. Previous studies showed that a synthetic peptide …


Poly(Ester Amide) And Poly(Ethyl Glyoxylate) Nanoparticles For Controlled Drug Release, Amira Mohamed Moustafa Dec 2014

Poly(Ester Amide) And Poly(Ethyl Glyoxylate) Nanoparticles For Controlled Drug Release, Amira Mohamed Moustafa

Electronic Thesis and Dissertation Repository

The objective of this research was to develop polymeric nanoparticles (NPs) having improved drug release properties for drug delivery. Poly(ester amide)s (PEAs) are promising biodegradable polymers. PEA NPs were prepared via emulsification-evaporation and salting-out methods and optimized through by varying different processing parameters. Polymer-model drug conjugates based on PEAs containing L-aspartic acid and rhodamine B were synthesized and used for NP preparation. Release behavior was studied and compared to a control system with physically encapsulated rhodamine B. It was shown that the release of rhodamine B from the covalent system did not show the burst effect and exhibited a slower …


Nanotechnology And Additive Manufacturing Platforms For Clinical Medicine: An Investigation Of 3d Printing Bioactive Constructs And Halloysite Nanotubes For Drug Delivery And Biomaterials, Jeffery A. Weisman Oct 2014

Nanotechnology And Additive Manufacturing Platforms For Clinical Medicine: An Investigation Of 3d Printing Bioactive Constructs And Halloysite Nanotubes For Drug Delivery And Biomaterials, Jeffery A. Weisman

Doctoral Dissertations

Personalized medicine requires the development of new technologies for controlled or targeted drug delivery. Three-dimensional (3D) printing and additive manufacturing techniques can be used to generate customized constructs for bioactive compound delivery. Nanotechnology in the form of nanoparticles, used as a stand-alone construct or for material enhancements, can significantly improve established biomaterials such as PMMA based bone cements or enable new technology to have enhanced capabilities. Combinations of the technologies can be used in such applications as infectious disease treatments, chemotherapeutic targeted drug delivery or targeted delivery of nearly any bioactive compound.

Chemotherapeutic or antibiotic enhanced 3D printing filaments were …


Developent Of A Phospholipid Encapsulation Process For Quantum Dots To Be Used In Biologic Applications, Logan Grimes Jun 2014

Developent Of A Phospholipid Encapsulation Process For Quantum Dots To Be Used In Biologic Applications, Logan Grimes

Master's Theses

The American Cancer Society predicts that 1,665,540 people will be diagnosed with cancer, and 585,720 people will die from cancer in 2014. One of the most common types of cancer in the United States is skin cancer. Melanoma alone is predicted to account for 10,000 of the cancer related deaths in 2014. As a highly mobile and aggressive form of cancer, melanoma is difficult to fight once it has metastasized through the body. Early detection in such varieties of cancer is critical in improving survival rates in afflicted patients. Present methods of detection rely on visual examination of suspicious regions …


Polysaccharide-Based Nanocarriers For Improved Drug Delivery, Nan Zhang Aug 2013

Polysaccharide-Based Nanocarriers For Improved Drug Delivery, Nan Zhang

Dissertations - ALL

The field of drug delivery has provided a solution to the limited efficacy and high toxicity of many drugs. Nano-sized drug carriers are popular because their size allows for selective accumulation in the diseased area. Polysaccharides are non-toxic and biodegradable natural polymers that can serve as the basis for these nano-sized carriers. Polysialic acid (PSA) is such a polysaccharide with strong hydrophilicity that may reduce uptake by the reticuloendothelial system and prolong drug circulation. In this study, we developed PSA-based nanocarriers, specifically micelles and nanoparticles, for improved drug delivery with improved efficacy and minimized toxicity. PSA-based micelle systems were developed …


Encapsulation And Controlled Release Of Rhu-Erythropoietin From Chitosan Biopolymer Nanoparticles, Cody Bulmer Apr 2012

Encapsulation And Controlled Release Of Rhu-Erythropoietin From Chitosan Biopolymer Nanoparticles, Cody Bulmer

Electronic Thesis and Dissertation Repository

The objective of this research project was to develop a drug delivery system for recombinant human erythropoietin (rHu-EPO), a glycoprotein hormone used in the treatment of renal anaemia and chemotherapy induced anaemia, using the biopolymer chitosan as the base component. Two types of chitosan nanoparticles were produced through ionotropic gelation using flush mixing with either tripolyphosphate (TPP) or carrageenan polymer. Chitosan-TPP and chitosan-carrageenan nanoparticles were generated under a variety of conditions to evaluate the effects of chitosan concentration, chitosan to anion mass ratio and solution pH on the nanoparticle characteristics of particle diameter, surface charge and particle size distribution. A …


Targeted Multistage Delivery Of Nanoparticles To The Bone Marrow, Aman Mann Aug 2011

Targeted Multistage Delivery Of Nanoparticles To The Bone Marrow, Aman Mann

Dissertations & Theses (Open Access)

Bone marrow is a target organ site involved in multiple diseases including myeloproliferative disorders and hematologic malignancies and metastases from breast and prostate. Most of these diseases are characterized with poor quality of life, and the treatment options are only palliative due to lack of delivery mechanisms for systemically injected drugs which results in dose limitation to protect the healthy hematopoietic cells. Therefore, there is a critical need to develop effective therapeutic strategies that allow for selective delivery of therapeutic payload to the bone marrow. Nanotechnology-based drug delivery systems provide the opportunity to deliver drugs to the target tissue while …