Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Biomedical Engineering and Bioengineering

Modification And Optimization Of Conducting Polymer-Modified, Redox-Magnetohydrodynamics (R-Mhd) Pumping For Enhanced And Sustained Microfluidics Applications, Md Foysal Zahid Khan Aug 2019

Modification And Optimization Of Conducting Polymer-Modified, Redox-Magnetohydrodynamics (R-Mhd) Pumping For Enhanced And Sustained Microfluidics Applications, Md Foysal Zahid Khan

Graduate Theses and Dissertations

In this work, a novel microfluidic pumping approach, redox-magnetohydrodynamics (R-MHD) has improved by materials and device optimization to use in lab-on-a-chip applications. In R-MHD, magnetic flux (B) and ionic current density (j) interacts to generate body force (FB) in between active electrodes, according to the equation FB = j×B. This unique fluid pumping approach is scalable, tunable, generates flat flow profile, and does not require any channels or valves. Pumping performance, such as speed scales with the ionic current density (j) and duration depends on the total charge (Q). The ionic current density (j) results from the conversion of electronic …


Investigation Of Dielectrophoretic Microfluidic Trap System For Separation And Parallel Analysis Of Single Particles, Tae Joon Kwak Aug 2019

Investigation Of Dielectrophoretic Microfluidic Trap System For Separation And Parallel Analysis Of Single Particles, Tae Joon Kwak

Theses and Dissertations

Separation and identification of single molecules and particles based on their chemical, biochemical and physical properties are critical in wide range of biomedical applications. Manipulating a single biomolecule requires sensitive approaches to avoid damage to the molecule. Recent progress in micro- and nano-technology enabled the development of various novel methods and devices to trap, separate, and characterize micro- and nano-particles. In this dissertation, a microfluidic particle trap system to electrically separate particles at the single particle level was developed through particle manipulation methods using dielectrophoresis. The research in this dissertation will explain the operation strategy and setup of the novel …


A Microfluidics-Based Cross-Flow Filtration Platform For Rapid Processing Of Amphiphilic Biomarkers From Blood, Kiersten D. Lenz Jul 2019

A Microfluidics-Based Cross-Flow Filtration Platform For Rapid Processing Of Amphiphilic Biomarkers From Blood, Kiersten D. Lenz

Biomedical Engineering ETDs

Early and accurate detection of bacterial infections can help save lives, prevent the spread of disease, and decrease the overuse of antibiotics. Our team at the Los Alamos National Laboratory has developed novel assays to detect bacterial biomarkers from patient blood at the point-of-care in order to facilitate a universal diagnostic platform. However, these biomarkers are amphiphilic in nature, and this biochemical property causes them to be sequestered by high-density and low-density lipoproteins (HDL and LDL) in the host’s blood. Extraction of the bacterial biomarkers from the lipoprotein complexes is thereby required for the development and deployment of a diagnostic …


Microfluidic Chip For High Efficiency Microinjection Of Caenorhabditis Elegans, Delaney Gray, Alex Hadsell, Jessica Talamantes Jun 2019

Microfluidic Chip For High Efficiency Microinjection Of Caenorhabditis Elegans, Delaney Gray, Alex Hadsell, Jessica Talamantes

Bioengineering Senior Theses

The terrestrial nematode, Caenorhabditis elegans, is an invaluable model organism for the study of molecular and cellular processes due to their small size, rapid generation time, easy cultivation, and invariant cell number. Additionally, 40% of genes known to be associated with human disease have clear orthologs in the C. elegans genome. In C. elegans genetics research, microinjection of genetic material into the worms is critical. Although an established technique, manual microinjection is tedious, low-throughput, and requires an expert researcher. This thesis details a novel microfluidic device designed to perform high-throughput microinjection. This two-layer, PDMS-based chip integrates microfluidic elements to …


3d Printing A Microfluidic Chip Capable Of Droplet Emulsion Using Ninjaflex Filament, Robert Andrews May 2019

3d Printing A Microfluidic Chip Capable Of Droplet Emulsion Using Ninjaflex Filament, Robert Andrews

Mechanical Engineering Undergraduate Honors Theses

This paper details an investigation into methods and designs of 3D printing a microfluidic system capable of droplet emulsion using NinjaFlex filament. The specific field in which this paper’s experiment is rooted is dubbed “BioMEMS,” short for bio microelectromechanical systems. One prominent research area in BioMEMS is developing a “lab on a chip.” Essentially, the goal is to miniaturize common lab processes to the micro scale, rendering it possible to include these processes in a small chip. Reducing necessary sample sizes, shortening the reaction times of lab processes, and increasing mobility of lab processes can all be realized through microfluidic …


Fluid Delivery System For A Cell Culture On A Microfluidic Chip, Austin J. Roeder, Colleen A. Richards, Emily A. Matteson Mar 2019

Fluid Delivery System For A Cell Culture On A Microfluidic Chip, Austin J. Roeder, Colleen A. Richards, Emily A. Matteson

Biomedical Engineering

This project report provides a description of the progress made in the development of a fluid delivery system for a microfluidic cell culture on a chip. The system is intended to be used in a humidified incubator in a university laboratory and the fluid delivery system is required to exist and operate within that incubator for extended periods of time. Therefore, the system will be gravity-driven and contain no electronic components. The key specification of the system is to provide fluid flow at a constant velocity.

After manufacturing and testing the device, all specifications were met except for the fluid …


Controlled Migration Of Retinal Progenitor Cells Within Electro-Chemotactic Fields, Shawn Mishra Jan 2019

Controlled Migration Of Retinal Progenitor Cells Within Electro-Chemotactic Fields, Shawn Mishra

Dissertations and Theses

Vision loss in retinal degenerative diseases is overwhelmingly attributed to damage and death of retinal photoreceptor cells. Studies in mouse retina have suggested that transplantation of isolated post-natal or stem cell-derived retinal progenitor cells (RPCs) to replace apoptotic or damaged photoreceptors may be a novel approach to restore vision. Thus far, outcomes project that the amount of restored visual response depends upon the migration of transplanted cells from insertion in the sub-retinal space to the outer nuclear layer (ONL). However, transplantation efficiency is exceedingly low – ~5% cells transplanted enter the retina – directly limiting the efficacy of the treatments. …


Neuron-Glial (Ng) Interactions: A Microfluidic Examination Of Ng Emergent Responses For Repair, Tanya Singh Jan 2019

Neuron-Glial (Ng) Interactions: A Microfluidic Examination Of Ng Emergent Responses For Repair, Tanya Singh

Dissertations and Theses

Neuron-glia communication is crucial to the development, plasticity, and repair of the nervous system (NS). While neurons are well known to conduct electrical impulses that transfer biological information and stimuli throughout the NS, our understanding of the roles of glia continues to evolve from when the cells were largely believed to act solely for neuronal support. Recent decades of research has shown that glia can alter metabolism, conduct impulses and change phenotype for NS repair. NG interactions have, thereby, become heavily researched in varied areas of biomedical engineering, including embryogenesis, neural regeneration, growth, and intracellular synaptic activity. However, while NG …


Collective Behavior Of Drosophila Melanogaster Neural Progenitor And Imaginal Disc Cells Within Controlled Microenvironments, Caroline D. Pena Jan 2019

Collective Behavior Of Drosophila Melanogaster Neural Progenitor And Imaginal Disc Cells Within Controlled Microenvironments, Caroline D. Pena

Dissertations and Theses

Regenerative therapies for the damaged visual system have introduced stem-derived cells to recapitulate developmental processes and initiate functional regeneration in different components of the eye. The developing visual system in Drosophila Melanogaster offers a model in which to analyze the associated processes in retinogenesis. The optic nerve is critical to vision and is developmentally preceded in Drosophila by a structure called the Optic Stalk (OS). Collective migration of neural and retinal progenitor cells (RPCs) from the developing brain lobes (DBL) to the Imaginal Disc (ID), through the OS, is a fundamental part of regenerative strategies in retina. Developmental signals governing …