Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Biomedical Engineering and Bioengineering

Frontiers In The Self-Assembly Of Charged Macromolecules, Khatcher O. Margossian Oct 2022

Frontiers In The Self-Assembly Of Charged Macromolecules, Khatcher O. Margossian

Doctoral Dissertations

The self-assembly of charged macromolecules forms the basis of all life on earth. From the synthesis and replication of nucleic acids, to the association of DNA to chromatin, to the targeting of RNA to various cellular compartments, to the astonishingly consistent folding of proteins, all life depends on the physics of the organization and dynamics of charged polymers. In this dissertation, I address several of the newest challenges in the assembly of these types of materials. First, I describe the exciting new physics of the complexation between polyzwitterions and polyelectrolytes. These materials open new questions and possibilities within the context …


Pilot Study Exploring The Effect Of Targeted Cox-2 Inhibition In Macrophages Responding To Neuronal Injury; Promoting Enhanced Axonal Regeneration, Alyssa Brauckmann May 2020

Pilot Study Exploring The Effect Of Targeted Cox-2 Inhibition In Macrophages Responding To Neuronal Injury; Promoting Enhanced Axonal Regeneration, Alyssa Brauckmann

Electronic Theses and Dissertations

Celecoxib nanoemulsion (CXB-NE) has been developed as a macrophage targeted analgesics by Dr. Janjic and her team at Duquesne University, (Janjic et al, 2018; Liu et al, 2020; Saleem et al, 2019b; Vasudeva et al, 2014). The CXB-NE nanoemulsion carrying a Nonsteroidal Anti-inflammatory (NSAID) inhibitor of COX-2 activity result in a reduction in PGE2 expression in macrophages. Using CXB-NE in rats that have peripheral nerve injury constricting the sciatic nerve relieves hypersensitivity, a pain-like behavior. The treatment also decreases inflammation associated with this chronic constriction injury (Janjic et al, 2018; Saleem et al, 2019b; Stevens et al, 2019). In this …


Development Of In Situ Forming Hydrogels For Intra-Articular Drug Delivery, Andy Prince Feb 2019

Development Of In Situ Forming Hydrogels For Intra-Articular Drug Delivery, Andy Prince

Electronic Thesis and Dissertation Repository

Hydrogels are 3-dimensional crosslinked polymer networks that can absorb significant amounts of water. The physical properties associated with hydrogels affords them resemblance to biological tissues making them good candidates for biomedical applications. Many pharmaceuticals, specifically non-steroidal anti-inflammatory drugs (NSAIDs), have poor aqueous solubility, which limits their bioavailability and efficacy. People suffering from chronic osteoarthritis (OA) are required to frequently take large doses to mitigate pain, which can lead to serious side effects. Hydrogels are good strategies to deliver NSAIDs via articular injection because they can form solid gels in situ. This thesis describes the synthesis, formulation, mechanical testing, in …


Fabrication And Modification Of Titania Nanotube Arrays For Harvesting Solar Energy And Drug Delivery Applications, Ahmed El Ruby Abdel Rahman Mohamed Dec 2017

Fabrication And Modification Of Titania Nanotube Arrays For Harvesting Solar Energy And Drug Delivery Applications, Ahmed El Ruby Abdel Rahman Mohamed

Electronic Thesis and Dissertation Repository

The fast diminishing of fossil fuels in the near future, as well as the global warming caused by increasing greenhouse gases have motivated the urgent quest to develop advanced materials as cost-effective photoanodes for solar light harvesting and many other photocatalytic applications. Recently, titania nanotube arrays (TNTAs) fabricated by anodization process has attracted great interest due to their excellent properties such as: high surface area, vertically oriented, highly organized, one-dimensional, nanotubular structure, photoactivity, chemical stability and biocompatibility. This unique combination of excellent properties makes TNTAs an excellent photoanode for solar light harvesting. However, the relatively wide band gap energy of …


The Design, Fabrication, And Characterization Of Nanoparticle-Protein Interactions For Theranostic Applications, Wai Hei Tse Aug 2017

The Design, Fabrication, And Characterization Of Nanoparticle-Protein Interactions For Theranostic Applications, Wai Hei Tse

Electronic Thesis and Dissertation Repository

Theranostics, a combination of therapeutics and diagnostics, spans a spectrum of research areas to provide new opportunities in developing new healthcare technologies and medicine at affordable prices. Through employing a personalized medicine approach, biotechnology can be tailored to the needs of an individual. Applications of theranostics include drug delivery carriers capable of sustained drug release and targeted delivery, biosensors with high sensitivity and selectivity, and diagnostic relevant entities that can be incorporated into the former technologies. Nanotechnology provides a suitable foundation for theranostics to build upon due to material-based properties; magnetism, biocompatibility, and quantum effects to name a few. Purpose …


Poly(Ester Amide) And Poly(Ethyl Glyoxylate) Nanoparticles For Controlled Drug Release, Amira Mohamed Moustafa Dec 2014

Poly(Ester Amide) And Poly(Ethyl Glyoxylate) Nanoparticles For Controlled Drug Release, Amira Mohamed Moustafa

Electronic Thesis and Dissertation Repository

The objective of this research was to develop polymeric nanoparticles (NPs) having improved drug release properties for drug delivery. Poly(ester amide)s (PEAs) are promising biodegradable polymers. PEA NPs were prepared via emulsification-evaporation and salting-out methods and optimized through by varying different processing parameters. Polymer-model drug conjugates based on PEAs containing L-aspartic acid and rhodamine B were synthesized and used for NP preparation. Release behavior was studied and compared to a control system with physically encapsulated rhodamine B. It was shown that the release of rhodamine B from the covalent system did not show the burst effect and exhibited a slower …


Bioactivity And Cell-Mediated Targeting Of Multistage Nanoporous Silicon Particles, Jonathan O. Martinez May 2014

Bioactivity And Cell-Mediated Targeting Of Multistage Nanoporous Silicon Particles, Jonathan O. Martinez

Dissertations & Theses (Open Access)

Progress in drug delivery approaches have not adequately translated into clinical advances in the diagnosis or treatment of inflammatory disorders (e.g., cancer). This disconnect is rooted in the inefficient delivery of imaging and therapeutic agents to the inflamed site upon systemic delivery. A multitude of biological barriers pose insurmountable obstacles limiting the ability of the agent to effectively reach and accumulate at the target site. Nanoparticles (NP) surfaced as potential vectors to encapsulate and deliver biological agents. However, even after surface decoration, NP have failed to evade biological barriers (i.e., MPS) and to accumulate at the tumor site at therapeutic …


Encapsulation And Controlled Release Of Rhu-Erythropoietin From Chitosan Biopolymer Nanoparticles, Cody Bulmer Apr 2012

Encapsulation And Controlled Release Of Rhu-Erythropoietin From Chitosan Biopolymer Nanoparticles, Cody Bulmer

Electronic Thesis and Dissertation Repository

The objective of this research project was to develop a drug delivery system for recombinant human erythropoietin (rHu-EPO), a glycoprotein hormone used in the treatment of renal anaemia and chemotherapy induced anaemia, using the biopolymer chitosan as the base component. Two types of chitosan nanoparticles were produced through ionotropic gelation using flush mixing with either tripolyphosphate (TPP) or carrageenan polymer. Chitosan-TPP and chitosan-carrageenan nanoparticles were generated under a variety of conditions to evaluate the effects of chitosan concentration, chitosan to anion mass ratio and solution pH on the nanoparticle characteristics of particle diameter, surface charge and particle size distribution. A …


Targeted Multistage Delivery Of Nanoparticles To The Bone Marrow, Aman Mann Aug 2011

Targeted Multistage Delivery Of Nanoparticles To The Bone Marrow, Aman Mann

Dissertations & Theses (Open Access)

Bone marrow is a target organ site involved in multiple diseases including myeloproliferative disorders and hematologic malignancies and metastases from breast and prostate. Most of these diseases are characterized with poor quality of life, and the treatment options are only palliative due to lack of delivery mechanisms for systemically injected drugs which results in dose limitation to protect the healthy hematopoietic cells. Therefore, there is a critical need to develop effective therapeutic strategies that allow for selective delivery of therapeutic payload to the bone marrow. Nanotechnology-based drug delivery systems provide the opportunity to deliver drugs to the target tissue while …


Nanofabrication Of Halloysite-Pcl Composite Scaffolds And Functionalization Of Titanium For Tissue Regeneration, Shraddha Parshottambhai Patel Jul 2011

Nanofabrication Of Halloysite-Pcl Composite Scaffolds And Functionalization Of Titanium For Tissue Regeneration, Shraddha Parshottambhai Patel

Doctoral Dissertations

Major medical needs may be achieved through regenerative medicine. Nanotechnology has triggered a research revolution in many important areas such as the biomedical sciences and bioengineering at the molecular level which has grown significantly due to the availability of new analytical applications and tools based on nanotechnology. Clinical conditions and diseases being targeted by nanotechnology research include burns, Alzheimer's and Parkinson's disease, implant failure, improved wound healing, birth defects, osteoporosis and congestive heart defects. Therapeutic use of growth factors and drugs to stimulate the production and/or function of endogenous cells represents a key area of regenerative medicine. The development of …


Ultrasonic Assisted Layer-By-Layer Assembly For Stable Nanocolloids Of Curcumin And Paclitaxel, Zhiguo Zheng Apr 2011

Ultrasonic Assisted Layer-By-Layer Assembly For Stable Nanocolloids Of Curcumin And Paclitaxel, Zhiguo Zheng

Doctoral Dissertations

Researchers have been trying to fight cancer with synthesis of new bioactive compounds but many of these novel drugs have low solubility in water and it is difficult to deliver them into a patient's body. One way of solving this particular problem is to use nanoscale drug delivery systems. In this dissertation, we describe using an ultrasonic assisted layer-by-layer encapsulation process to prepare anti-cancer drugs with 50∼200 nm particle size with designed coating to achieve sustained release and target delivery.

Two methods for systematic manufacture of low solubility anti-cancer drug nanoparticles were proposed: I) Top-down approach to breakdown larger drug …