Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Biomedical Engineering and Bioengineering

Skeletal Muscle Contraction Simulation: A Comparison In Modeling, Jonathan M. Ford Nov 2013

Skeletal Muscle Contraction Simulation: A Comparison In Modeling, Jonathan M. Ford

USF Tampa Graduate Theses and Dissertations

Computer generated three-dimensional (3-D) models are being used at increasing rates in the fields of entertainment, education, research, and engineering. One of the aspects of interest includes the behavior and function of the musculoskeletal system. One such tool used by engineers is the finite element method (FEM) to simulate the physics behind muscle mechanics. There are several ways to represent 3-D muscle geometry, namely a bulk, a central line of action and a spline model. The purpose of this study is to exmine how these three representations affect the overall outcome of muscle movement. This is examined in a series …


Design And Development Of A Novel Expanding Pedicle Screw For Use In The Osteoporotic Lumbar Spine, Parham Rasoulinejad Aug 2013

Design And Development Of A Novel Expanding Pedicle Screw For Use In The Osteoporotic Lumbar Spine, Parham Rasoulinejad

Electronic Thesis and Dissertation Repository

Pedicle screws are commonly utilized in spinal surgery; however, traditional designs often do not provide adequate fixation in osteoporotic spines. The objective of this thesis was to develop a novel expanding screw for use in osteoporotic lumbar pedicles. Helical screws capable of expanding post insertion were built on a rapid prototype machine. A materials testing machine performed axial load to failure tests in both Sawbones and cadaveric specimens comparing the new design to traditional screws (rate = 10mm/min to 20 mm). Output parameters included yield load, ultimate load, stiffness, energy to failure and total energy. The expanding screw showed a …


Computational Biomechanical Modeling Of The Human Knee During Kneeling, Tariq R. Abo-Alhol Aug 2013

Computational Biomechanical Modeling Of The Human Knee During Kneeling, Tariq R. Abo-Alhol

Electronic Theses and Dissertations

Total knee replacement benefits patients who suffer from severe knee pain or joint stiffness and other joint related illnesses that limit everyday activities. There has been an increase in the number of procedures performed each year and a need to evaluate the performance of these implants during specialized activities such as kneeling. Most computational studies lack insight into inter-patient variability and the results do not apply to large population. This study developed: (1) three-dimensional explicit finite element (FE) models to investigate natural and implanted knee joint kinematics and bone strain and (2) a platform to enable population-based evaluation by combining …


The Design And Validation Of A Computational Model Of The Human Wrist Joint, Afsarul Mir May 2013

The Design And Validation Of A Computational Model Of The Human Wrist Joint, Afsarul Mir

Theses and Dissertations

Advancements in computational capabilities have allowed researchers to turn towards modeling as an efficient tool to replicate and predict outcomes of complex systems. Computational models of the musculoskeletal system have gone through various iterations with early versions employing dramatic simplifications. In this work, a three-dimensional computational model of the wrist joint was developed. It accurately recreated the skeletal structures of the hand and wrist and represented the constraints imposed by soft tissue structures like ligaments, tendons, and other surrounding tissues. It was developed to function as a tool to investigate the biomechanical contributions of structures and the kinematic response of …


An Investigation Of Subaxial Cervical Spine Trauma And Surgical Treatment Through Biomechanical Simulation And Kinematic Analysis, Stewart D. Mclachlin Apr 2013

An Investigation Of Subaxial Cervical Spine Trauma And Surgical Treatment Through Biomechanical Simulation And Kinematic Analysis, Stewart D. Mclachlin

Electronic Thesis and Dissertation Repository

In vitro biomechanical investigations can help to identify changes in subaxial cervical spine (C3-C7) stability following injury, and determine the efficacy of surgical treatments through controlled joint simulation experiments and kinematic analyses. However, with the large spectrum of cervical spine trauma, a large fraction of the potential injuries have not been examined biomechanically. This includes a lack of studies investigating prevalent flexion-distraction injuries. Therefore, the overall objective of this thesis was to investigate the changes in subaxial cervical spine kinematic stability with simulated flexion-distraction injuries and current surgical instrumentation approaches using both established and novel biomechanical techniques.

Three in vitro …


Effect Of Rolling On Viscoelastic Fluids Using A Novel Testing Device, Aswini Mangadu Jan 2013

Effect Of Rolling On Viscoelastic Fluids Using A Novel Testing Device, Aswini Mangadu

Dissertations and Theses

The purpose of this research thesis project was to develop a mechanical testing device that could enable us to load articular cartilage with a rolling/sliding motion. This novel device was then used to observe the effect of a rolling motion on the fluid film thickness of different lubricants (motor oil, synovial fluid and Hyaluronic Acid (HA)) to varying loads (1kg, 2,kg, 3kg and 4kg) and speeds (10, 25, 48 and 91 mm/s) applied on the sample fluids for 10 cycles. We were able to examine the effect of different speeds within each load for each of the fluid that was …


A Robotic Neuro-Musculoskeletal Simulator For Spine Research, Robb W. Colbrunn Jan 2013

A Robotic Neuro-Musculoskeletal Simulator For Spine Research, Robb W. Colbrunn

ETD Archive

An influential conceptual framework advanced by Panjabi represents the living spine as a complex neuromusculoskeletal system whose biomechanical functioning is rather finely dependent upon the interactions among and between three principal subsystems: the passive musculoskeletal subsystem (osteoligamentous spine plus passive mechanical contributions of the muscles), the active musculoskeletal subsystem (muscles and tendons), and the neural and feedback subsystem (neural control centers and feedback elements such as mechanoreceptors located in the soft tissues) [1]. The interplay between subsystems readily encourages "thought experiments" of how pathologic changes in one subsystem might influence another--for example, prompting one to speculate how painful arthritic changes …


Cervical Spine Tolerance And Response In Compressive Loading Modes Including Combined Compression And Lateral Bending, Daniel Toomey Jan 2013

Cervical Spine Tolerance And Response In Compressive Loading Modes Including Combined Compression And Lateral Bending, Daniel Toomey

Wayne State University Dissertations

Injuries in motor vehicle accidents continue to be a serious and costly societal problem. Automotive safety researchers have observed noticeable lateral bending of the anthropomorphic test device (ATD) neck prior to or in conjunction with head impact with the vehicle roof in rollover crash tests. Since there is scant data available about the effects of lateral bending on overall compressive tolerance of the human cervical spine, it is unknown if the presence of lateral bending is important to consider during impacts with the apex of the head. Compressive injury tolerance has historically been reported by identifying the axial force at …


Biomechanics Of Porcine Renal Artery And The Development Of A Replacment Vessel, Mohamed Gabr Jan 2013

Biomechanics Of Porcine Renal Artery And The Development Of A Replacment Vessel, Mohamed Gabr

Theses and Dissertations

Mechanical characterization of biological soft tissues is essential in the field of biomedical engineering. In this study several loading experiments have been performed to efficiently characterize the passive mechanical response of both native porcine renal arteries and newly developed tissue constructs. The first aim of these studies is to determine whether there is a difference in mechanical response between the main renal artery and its first branch. After fitting the bi-axial data to a Holzapfel-type constitutive model, the results show that there is no statistical difference between the model parameters for renal artery and the first branch. The only significant …