Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 14 of 14

Full-Text Articles in Biomedical Engineering and Bioengineering

Computational Methodology For Generating Patient-Specific Soft Tissue Representations, Ahilan Anantha Krishnan Nov 2023

Computational Methodology For Generating Patient-Specific Soft Tissue Representations, Ahilan Anantha Krishnan

Electronic Theses and Dissertations

This dissertation focused on modeling specimen-specific soft tissue structures in the context of joint replacement surgery. The research addressed four key aspects. The first study involved developing a workflow for creating finite element models of the hip capsule to replicate its torque-rotational response. Experimental data from ten cadaveric hips were used to calibrate the models, resulting in improved accuracy and relevance for surgical planning and implant design. The second study tackled the challenge of expediting the calibration of mechanical properties of the hip capsule to match patient-specific laxities. A statistical shape function model was proposed to generate patient-specific finite element …


Digital Twins Of The Living Knee: From Measurements To Model, Thor Erik Andreassen Nov 2023

Digital Twins Of The Living Knee: From Measurements To Model, Thor Erik Andreassen

Electronic Theses and Dissertations

Modern medicine has dramatically improved the lives of many. In orthopaedics, robotic surgery has given clinicians superior accuracy when performing interventions over conventional methods. Nevertheless, while these and many other methods are available to ensure treatments are performed successfully, far fewer methods exist to predict the proper treatment option for a given person. Clinicians are forced to categorize individuals, choosing the best treatment on “average.” However, many individuals differ significantly from the “average” person, for which many of these treatments are designed. Going forward, a method of testing, evaluating, and predicting different treatment options' short- and long-term effects on an …


Patient Movement Monitoring Based On Imu And Deep Learning, Mohsen Sharifi Renani Jun 2023

Patient Movement Monitoring Based On Imu And Deep Learning, Mohsen Sharifi Renani

Electronic Theses and Dissertations

Osteoarthritis (OA) is the leading cause of disability among the aging population in the United States and is frequently treated by replacing deteriorated joints with metal and plastic components. Developing better quantitative measures of movement quality to track patients longitudinally in their own homes would enable personalized treatment plans and hasten the advancement of promising new interventions. Wearable sensors and machine learning used to quantify patient movement could revolutionize the diagnosis and treatment of movement disorders. The purpose of this dissertation was to overcome technical challenges associated with the use of wearable sensors, specifically Inertial Measurement Units (IMUs), as a …


An Investigation Into The Plate Fixation For Periprosthetic Femoral Fractures, Xiang Chen Jan 2022

An Investigation Into The Plate Fixation For Periprosthetic Femoral Fractures, Xiang Chen

Electronic Theses and Dissertations

Periprosthetic femoral fractures are the third most reason for reoperation after the total hip arthroplasty with an incident rate of approximately 6%. The Vancouver type B periprosthetic femoral fractures account for over 70% of all cases, while the sub-type B1 fracture (when the total hip stem is stable) has remained a clinical challenge due to incidences of severe complications after the standard plate-screw fixation. To seek biomechanically sound fixations for the Vancouver type B1 fracture, this dissertation developed a combined modeling and testing framework to investigate the efficacy of fixation for a Vancouver type B1 fracture using different construct lengths …


Biomechanical Characterization Of Video-Recorded Short-Distance Falls Involving Children Equipped With A Biometric Device In A Childcare Setting: A Pilot Study., Danielle K. Cory May 2021

Biomechanical Characterization Of Video-Recorded Short-Distance Falls Involving Children Equipped With A Biometric Device In A Childcare Setting: A Pilot Study., Danielle K. Cory

Electronic Theses and Dissertations

Background: A fall is the most common falsely reported injury scenario when a young child presents for medical care and the caregiver is concealing abuse. There is a lack of reliably witnessed falls with known outcomes to aid in the distinction between accidental and abusive injuries.

Objectives: The objectives of this study were to characterize video-recorded short distance falls involving young children in a childcare setting, to identify body regions most commonly impacted in these short distance falls, to characterize the head biomechanics of these falls, and describe fall characteristics. Additionally, physics-based models were used to predict fall biomechanics in …


Dislocation Mechanics Of Total Hip Arthroplasty: A Combined Experimental And Computational Analysis, Michael Scinto Jan 2021

Dislocation Mechanics Of Total Hip Arthroplasty: A Combined Experimental And Computational Analysis, Michael Scinto

Electronic Theses and Dissertations

While total hip arthroplasty is considered a successful procedure, dislocation remains a serious complication as recurrent dislocations may require additional surgeries. Knowledge on dislocation events as they occur in vivo are limited, therefore researchers rely on experimental and computational methods. A custom MATLAB script and an experimental procedure utilizing a six-degree of freedom actuator were developed to further understand how various surgical considerations affect dislocation mechanics in total hip arthroplasty. Computationally, it was determined that impingement free range of motion is limited during internal rotation in flexion and during external rotation in extension. Experimentally, our results suggest that the posterior …


Effects On Initial Fixation Of Cementless Tibial Trays In Total Knee Arthroplasty, Brooke Fritts Thompson Jan 2020

Effects On Initial Fixation Of Cementless Tibial Trays In Total Knee Arthroplasty, Brooke Fritts Thompson

Electronic Theses and Dissertations

Bone mineral density (BMD), among other factors, largely effect the initial stability of the cementless tibial tray component in a total knee replacement (TKR), where increased motion at the tray-bone interface hinders bony ingrowth. With a lack of bony ingrowth, the cementless implant will not experience long-term success. Understanding which factors influence initial stability yields insight into surgical technique considerations and help inform a surgeon’s implant choice. The objective of this study was to evaluate factors influencing the initial stability of cementless tibial trays using a 6-degree of freedom (6-DOF) robotic joint simulator, the AMTI VIVO, and combined loading scenarios …


Predictive Modeling Of Hip Dislocation: Assessment Of Surgical And Patient Factors To Reduce The Occurrence Of Hip Instability And Adverse Clinical Outcomes, Daniel N. Huff Jan 2018

Predictive Modeling Of Hip Dislocation: Assessment Of Surgical And Patient Factors To Reduce The Occurrence Of Hip Instability And Adverse Clinical Outcomes, Daniel N. Huff

Electronic Theses and Dissertations

Instability and dislocation remain leading indications for revision of primary Total Hip Arthroplasty (THA). Many studies have addressed the links between implant design and propensity for dislocation, however a comprehensive review of the ability of modern THA constructs to protect against joint instability is needed.

Accordingly, the objective of this study is to provide objective data about THA risks to be considered in the treatment algorithm to protect against adverse joint loading conditions and joint instability. Adverse loading conditions were assessed in a population of activities of daily living using data from telemetric hip implant representation in an FE simulation …


Biomechanical Testing Of An Exercise For Strengthening The Proximal Femur., Alyssa Osbourne Aug 2017

Biomechanical Testing Of An Exercise For Strengthening The Proximal Femur., Alyssa Osbourne

Electronic Theses and Dissertations

Based on the principles of cutting edge bone remodeling research, a unique therapeutic exercise device was designed specifically to improve bone quality at the most critical location of the proximal femur prone to fracture: the superior-lateral femoral neck where the fracture first initiates during a fall. The exercise/device is intended to work by inducing enough strain in the bone to stimulate the body’s natural bone remodeling mechanisms to increase bone density in the proximal femur and consequently prevent a fracture from arising if a fall to the side does occur.

In order to test the proposed exercise, experiments simulating the …


Specimen-Specific Natural, Pathological, And Implanted Knee Mechanics Using Finite Element Modeling, Azhar Akber Ali Jan 2017

Specimen-Specific Natural, Pathological, And Implanted Knee Mechanics Using Finite Element Modeling, Azhar Akber Ali

Electronic Theses and Dissertations

There is an increasing incidence of knee pain and injury among the population, and increasing demand for higher knee function in total knee replacement designs. As a result, clinicians and implant manufacturers are interested in improving patient outcomes, and evaluation of knee mechanics is essential for better diagnosis and repair of knee pathologies. Common knee pathologies include osteoarthritis (degradation of the articulating surfaces), patellofemoral pain, and cruciate ligament injury and/or rupture. The complex behavior of knee motion presents unique challenges in the diagnosis of knee pathology and restoration of healthy knee function. Quantifying knee mechanics is essential for developing successful …


Multiscale Musculoskeletal Modeling Of The Lower Limb To Perform Personalized Simulations Of Movement, Alessandro Navacchia Jan 2016

Multiscale Musculoskeletal Modeling Of The Lower Limb To Perform Personalized Simulations Of Movement, Alessandro Navacchia

Electronic Theses and Dissertations

Computational modeling has been used for many decades to inform design and decision-making in several fields of engineering, such as aerospace, automotive, petroleum, and others. However, it still struggles to have a similar impact in fields of medicine, such as orthopaedics. Three of the challenges that have limited the use of computational modeling in the clinical practice and in product development are model validation, personalization, and realism. Validation is a challenge because several internal parameters of the human body, such as muscle forces, are not safely measurable in vivo and, consequently, a thorough comparison between model outputs …


The Neuromuscular Response To Spinal Manipulation: Quantifying The Effect Of Pain With Electromyography, Stuart James Currie Jan 2015

The Neuromuscular Response To Spinal Manipulation: Quantifying The Effect Of Pain With Electromyography, Stuart James Currie

Electronic Theses and Dissertations

Objective

To establish a methodology to quantify the neuromuscular response to spinal manipulation, develop a comprehensive date set including factors that affect the response, and compare the responses in both healthy participants and participants with acute and chronic low back pain.

Methods

Surface and indwelling electromyography at eight muscle locations were recorded during lumbar side-lying manipulations in 20 asymptomatic participants, 20 acute pain participants, and 20 chronic pain participants. Onset delay detection was optimized for signal detection failures and methodological comparisons were performed using a generalized linear model. The number of muscle responses and muscle activity onset delays in relation …


Design Of The High-Speed Stereo Radiography System, John C. Ivester Iv Aug 2014

Design Of The High-Speed Stereo Radiography System, John C. Ivester Iv

Electronic Theses and Dissertations

Orthopaedic pathologies often involve disruption of the mechanical environment of a joint at/below the mm scale. The ability to measure biomechanical kinematics at the sub-mm scale is essential for obtaining valuable insight into pathologies, but small motions of the joints are difficult to quantify. Estimates of skeletal kinematics are commonly made from optical motion capture systems and markers placed on the skin. The error caused by external marker movement is largely avoided with x-ray motion capture. Dynamic radiography uses a series of x-ray images recorded at high-speed and captures in-vivo joint motion. Uncovering the mechanical foundation of orthopaedic pathologies requires …


Computational Biomechanical Modeling Of The Human Knee During Kneeling, Tariq R. Abo-Alhol Aug 2013

Computational Biomechanical Modeling Of The Human Knee During Kneeling, Tariq R. Abo-Alhol

Electronic Theses and Dissertations

Total knee replacement benefits patients who suffer from severe knee pain or joint stiffness and other joint related illnesses that limit everyday activities. There has been an increase in the number of procedures performed each year and a need to evaluate the performance of these implants during specialized activities such as kneeling. Most computational studies lack insight into inter-patient variability and the results do not apply to large population. This study developed: (1) three-dimensional explicit finite element (FE) models to investigate natural and implanted knee joint kinematics and bone strain and (2) a platform to enable population-based evaluation by combining …