Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Biomedical Engineering and Bioengineering

Effects Of Genipin Crosslinking On The Properties Of Tendon Derived Extracellular Matrix Hydrogels, Alicia Cheyenne Coombs May 2021

Effects Of Genipin Crosslinking On The Properties Of Tendon Derived Extracellular Matrix Hydrogels, Alicia Cheyenne Coombs

Theses and Dissertations

Extracellular matrix (ECM) hydrogels are a useful biomaterial in the tissue engineering field used for injectables in drug delivery systems, wound dressing, tissue regeneration and many other applications. ECM hydrogels are highly biocompatible, contain proper ratios of biomolecules required for complex bioactivity of tissues and they promote tissue repair. However, ECM hydrogels typically have poor mechanical strength, which leads to hydrogel instability, and a limitation in their ability to be modified for translational applications. In this research, genipin, a natural crosslinker derived from plants, was utilized in an attempt to improve upon the mechanical limitations of ECM hydrogels. Genipin has …


Bioink Optimization And Effects Of Microgravity On 3d Bioprinted Cell Laden Constructs, Likitha Somasekhar May 2021

Bioink Optimization And Effects Of Microgravity On 3d Bioprinted Cell Laden Constructs, Likitha Somasekhar

Theses and Dissertations

Bioengineered 3D tissue constructs have gained attention as in vitro tools for the study of cell-cell and cell-matrix interactions and are being explored for potential use as experimental models for mimicking human tissues. One of the main problems in tissue engineering is the necessity to vascularize complex engineered tissues and sacrificial printing has been recognized as a possible solution to vascularization of the bioprinted tissues. Research studies have demonstrated that exposure to microgravity in space induces adaptive alterations in vascular structure and function. Changes in the morphology and gene expression is observed when endothelial cells are exposed to microgravity and …


Nature-Inspired Material Strategies Towards Functional Devices, Sayantan Pradhan Jan 2021

Nature-Inspired Material Strategies Towards Functional Devices, Sayantan Pradhan

Theses and Dissertations

Naturally sourced, renewable biomaterials possess outstanding advantages for a multitude of biomedical applications owing to their biodegradability, biocompatibility, and excellent mechanical properties. Of interest in this dissertation are silk (protein) and chitin (polysaccharide) biopolymers for the fabrication of functional biodevices. One of the major challenges restricting these materials beyond their traditional usage as passive substrate materials is the ability to combine them with high-resolution fabrication techniques. Initial research work is directed towards the fabrication of micropatterned, flexible 2D substrates of silk fibroin and chitin using bench-top photolithographic techniques. Research is focused on imparting electrochemical properties to silk proteins using conducting …


Decellularized Matrices Effect On The Adaptive Immune Response, Kegan Sowers Jan 2018

Decellularized Matrices Effect On The Adaptive Immune Response, Kegan Sowers

Theses and Dissertations

Decellularized extracellular matrices have been a growing area of interest in the biomedical engineering fields of tissue engineering and regenerative medicine.As these materials move toward clinical applications, the immune response to these materials will be a driving force toward their success in clinical approaches. Fully digested decellularized matrix constructs derived from porcine liver, muscle and lung were created to test the adaptive immune response. Hydrogel characterization ensured that the materials had relatively similar stiffness levels to reduce variability, and in vitro studies were conducted. Each individual construct as well as a gelatin control were plated with a co-culture of macrophages …


Engineering Surface Properties To Modulate Inflammation And Stem Cell Recruitment Through Macrophage Activation, Kelly M. Hotchkiss Jan 2018

Engineering Surface Properties To Modulate Inflammation And Stem Cell Recruitment Through Macrophage Activation, Kelly M. Hotchkiss

Theses and Dissertations

Biomaterials are becoming the most commonly used therapeutic method for treatment of lost or damaged tissue in the body. Metallic materials are chosen for high strength orthopaedic and dental applications. Titanium (Ti) implants are highly successful in young, healthy patients with the ability to fully integrate to surrounding tissue. However the main population requiring these corrective treatments will not be healthy or young, therefore further research into material modifications have been started to improve outcomes in compromised patients. The body’s immune system will generate a response to any implanted material, and control the final outcome. Among the first and most …


Enabling Studies To Optimize Biomaterials For The Treatment Of Myocardial Infarction, Eva Adriana Romito Jun 2016

Enabling Studies To Optimize Biomaterials For The Treatment Of Myocardial Infarction, Eva Adriana Romito

Theses and Dissertations

The canonical mechanism of wound healing is disrupted following a myocardial infarction (MI), manifesting as an unregulated response that negatively impacts left ventricular (LV) function. This mechanism, termed post-MI remodeling, culminates in an outcome that favors progression to a systolic heart failure state and death for the patient. Therapeutic approaches following the occurrence of a MI are designed to modulate the natural remodeling process and mitigate the loss of cardiac function. The mechanics and structure of the healing infarct have been the focus of numerous pre-clinical and clinical investigations, leading to the impending clinical introduction of material injections as a …


Polysaccharide-Based Shear Thinning Hydrogels For Three-Dimensional Cell Culture, Vasudha Surampudi Jan 2015

Polysaccharide-Based Shear Thinning Hydrogels For Three-Dimensional Cell Culture, Vasudha Surampudi

Theses and Dissertations

The recreation of the complicated tissue microenvironment is essential to reduce the gap between in vitro and in vivo research. Polysaccharide-based hydrogels form excellent scaffolds to allow for three-dimensional cell culture owing to the favorable properties such as capability to absorb large amount of water when immersed in biological fluids, ability to form “smart hydrogels” by being shear-thinning and thixotropic, and eliciting minimum immunological response from the host. In this study, the biodegradable shear-thinning polysaccharide, gellan-gum based hydrogel was investigated for the conditions and concentrations in which it can be applied for the adhesion, propagation and assembly of different mammalian …


Engineering Of Polyamidoamine (Pamam) Dendrimers For Gene And Drug Delivery, Quan Yuan Apr 2012

Engineering Of Polyamidoamine (Pamam) Dendrimers For Gene And Drug Delivery, Quan Yuan

Theses and Dissertations

Dendrimers are a class of polymers with a highly branched, three-dimensional architecture composed of an initiator core, several interior layers of repeating units and multiple surface groups. They have been recognized as the most versatile compositionally and structurally controlled nanoscale building blocks throughout the fields of engineering, materials science, chemistry, and biology, and they have been widely investigated for drug and gene delivery. Polyamidoamine (PAMAM) dendrimers have inherent properties for gene delivery because of their high buffering capacity, polycationic surface and numerous surface groups for biofunctionlization. This dissertation is organized into four independent sections. The first section investigates a series …


Angiogenic Potential Of Human Macrophages On Electrospun Bioresorbable Vascular Grafts, Koyal Garg Nov 2008

Angiogenic Potential Of Human Macrophages On Electrospun Bioresorbable Vascular Grafts, Koyal Garg

Theses and Dissertations

The aim of this study was to investigate macrophage interactions with electrospun scaffolds and quantify the expression of vital angiogenic growth factors in vitro. This study will further help in evaluating the potential of these electrospun constructs as vascular grafts for tissue repair and regeneration in situ. Human peripheral blood macrophages were seeded in serum free media on electrospun (10 mm) discs of polydioxanone (PDO), elastin and PDO:elastin blends (50:50, 70:30 and 90:10). The growth factor secretion was analyzed by ELISA. Macrophages produced high levels of vascular endothelial growth factor (VEGF) and acidic fibroblast growth factor (aFGF). Transforming growth factor …