Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

Biological sciences

Biomechanics and Biotransport

Articles 1 - 9 of 9

Full-Text Articles in Biomedical Engineering and Bioengineering

The Role Of Mechanical Loading In Chondrocyte Signaling Pathways, Qiaoqiao Wan Aug 2016

The Role Of Mechanical Loading In Chondrocyte Signaling Pathways, Qiaoqiao Wan

Open Access Dissertations

Chondrocytes are a predominant cell type present in articular cartilage, whose integrity is jeopardized in joint degenerative diseases such as osteoarthritis (OA). In the chondrocytes of patients with OA, the elevated levels of inflammatory cytokines such as interleukin 1β (IL1β) and tumor necrosis factor α (TNFα) have been reported. These cytokines contribute to degradation of cartilage matrix by increasing activities of proteolytic enzymes. In addition to their contribution to proteolytic enzymes, these cytokines adversely affect anabolic activity of chondrocytes by inhibiting the production of proteoglycans and type II collagen. Therefore, blocking the action of these cytokines is a potential strategy ...


Rupture In Abdominal Aortic Aneurysm, Qusay Alfaori Dec 2015

Rupture In Abdominal Aortic Aneurysm, Qusay Alfaori

Theses and Dissertations

Quantification of abdominal aortic aneurysm development, its growth kinetics, and rupture criteria are important to decrease the risk of this life-threatening event. Uniaxial testing of healthy and collagen degraded aortic specimens from pigs was performed. A mathematical model, from the literature, for the stress-strain relationship that is suitable for describing the behavior of abdominal aortic tissue was used to derive specific tissue properties/parameters as a function of strain rate and as a function of specimen orientation. Analyses consisting of Finite Element Modeling of healthy and collagen degraded abdominal aortas were performed using ABAQUS finite element code and the measured ...


Investigation Of The Inherent Chemical, Structural, And Mechanical Attributes Of Bio-Engineered Composites Found In Nature: Alligator Gar’S Exoskeleton Fish Scales, Wayne Derald Hodo Dec 2015

Investigation Of The Inherent Chemical, Structural, And Mechanical Attributes Of Bio-Engineered Composites Found In Nature: Alligator Gar’S Exoskeleton Fish Scales, Wayne Derald Hodo

Theses and Dissertations

The U.S. Army has determined a huge cost savings of up to 51% can be accomplished by reducing the gross vehicle weight, for their personnel carrier, by 33%. To cut cost, composite materials are needed. Man-made composites can have superior material properties (high-strength, high-fracture toughness, and lightweight), but they are prone to delamination at the glued-layered interface. In contrast, fish scale is a natural composite that has the same material properties and, additionally, tend not to delaminate.

The focus of this study was to learn how nature integrates hard and soft materials at each length scale to form a ...


Effects Of Hip And Ankle Moments On Running Stability: Simulation Of A Simplified Model, Rubin C. Cholera Oct 2014

Effects Of Hip And Ankle Moments On Running Stability: Simulation Of A Simplified Model, Rubin C. Cholera

Open Access Theses

In human running, the ankle, knee, and hip moments are known to play different roles to influence the dynamics of locomotion. A recent study of hip moments and several hip-based legged robots have revealed that hip actuation can significantly improve the stability of locomotion, whether controlled or uncontrolled. Ankle moments are expected to also significantly affect running stability, but in a different way than hip moments. Here we seek to advance the current theory of dynamic running and associated legged robots by determining how simple open-loop ankle moments could affect running stability. We simulate a dynamical model, and compare it ...


Principle Of Bio-Inspired Insect Wing Rotational Hinge Design, Fan Fei Oct 2014

Principle Of Bio-Inspired Insect Wing Rotational Hinge Design, Fan Fei

Open Access Theses

A principle for designing and fabricating bio-inspired miniature artificial insect flapping wing using flexure rotational hinge design is presented. A systematic approach of selecting rotational hinge stiffness value is proposed. Based on the understanding of flapping wing aerodynamics, a dynamic simulation is constructed using the established quasi-steady model and the wing design. Simulations were performed to gain insight on how different parameters affect the wing rotational response. Based on system resonance a model to predict the optimal rotational hinge stiffness based on given wing parameter and flapping wing kinematic is proposed. By varying different wing parameters, the proposed method is ...


Developing An Embedded System Solution For High-Speed, High-Capacity Data Logging For A Size-Constrained, Low-Power Biomechanical Telemetry System And Investigating Components For Optimal Performance, Brandon Blaine Gardner Apr 2014

Developing An Embedded System Solution For High-Speed, High-Capacity Data Logging For A Size-Constrained, Low-Power Biomechanical Telemetry System And Investigating Components For Optimal Performance, Brandon Blaine Gardner

Open Access Theses

The Purdue Neurotrauma Group (PNG) seeks to develop a biomechanical telemetry system capable of monitoring and storing athletes' head motions with the intention of identifying when a player may be at risk of neurophysiological damage, especially brain damage. A number of commercially-available systems exist with a similar goal; however, each of these systems discards information below an acceleration threshold. Research by PNG indicates that any acceleration may contribute to brain damage and that, because of this, an event-based model is insufficient for a proper understanding of an athlete's neurophysiological health. Continuous-time monitoring of head accelerations is therefore necessary. To ...


Characteristics Of Fibrous Tissue At High Rates Of Tensile Loading, Benjamin J. Claus Apr 2014

Characteristics Of Fibrous Tissue At High Rates Of Tensile Loading, Benjamin J. Claus

Open Access Theses

The mechanical behavior of fibrous tissue is generally characterized at very low strain rates. However, many injuries occur at high rates of loading, such as those encountered in sporting events or vehicle accidents. An understanding of injury behavior requires the injury process to be recorded at high strain rates. Even at low rates of loading, the injury/failure within tissues occurs quickly. Furthermore, using conventional imaging systems, the surface of a specimen may be well documented throughout an experiment. However, damage formation does not necessarily begin at the surface of the specimen or even on the surface exposed to a ...


Biomechanics And Relaxivity For Functional Imaging Of Articular Cartilage Injury And Degradation, Kateri Elizabeth Fites Apr 2014

Biomechanics And Relaxivity For Functional Imaging Of Articular Cartilage Injury And Degradation, Kateri Elizabeth Fites

Open Access Theses

Osteoarthritis (OA) is a major debilitating health concern and economic burden worldwide, affecting 27 million people in the United States alone. OA often follows tissue injury, and is marked by changes in the structure and biomechanical function of cartilage, including breakdown of extracellular matrix molecules, loss of bulk tissue stiffness, and increase in articular surface friction and wear. Unlike bone and many other tissues, cartilage lacks an intrinsic capacity for regeneration. Advanced OA is typically diagnosed by patient symptoms (e.g. joint pain) and confirmed by radiographic evaluation of joint space narrowing. However, the application of functional imaging to assess ...


Developing A Hardware Platform For A Low-Power, Low-Cost, Size-Constrained Biomechanical Telemetry System, Aditya Balasubramanian Apr 2014

Developing A Hardware Platform For A Low-Power, Low-Cost, Size-Constrained Biomechanical Telemetry System, Aditya Balasubramanian

Open Access Theses

As sport-related traumatic brain injuries face increasing attention from the media and the general public, the need to be able to detect brain injury quickly, inexpensively and accurately is more important than ever. Commercially-available event-based systems exist that claim to achieve this goal; however, they collect little to no continuous-time data and primarily indicate when a pre-determined acceleration threshold has been exceeded under the unvalidated assumption that a potentially concussive blow has occurred. Recent findings by the Purdue Neurotrauma Group (PNG) have indicated that repeated exposure to both concussive and subconcussive blows can result in cumulative trauma disorder. To track ...