Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

Angiogenesis

Electronic Thesis and Dissertation Repository

Articles 1 - 3 of 3

Full-Text Articles in Biomedical Engineering and Bioengineering

Development Of A Cell-Based Regenerative Strategy To Modulate Angiogenesis And Inflammation In Ischemic Muscle, Fiona E. Serack Feb 2023

Development Of A Cell-Based Regenerative Strategy To Modulate Angiogenesis And Inflammation In Ischemic Muscle, Fiona E. Serack

Electronic Thesis and Dissertation Repository

The delivery of human adipose-derived stromal cells (hASCs) to ischemic tissues represents a promising strategy to promote vascular regeneration for patients with critical limb ischemia (CLI). This thesis focused on the evaluation of hydrogels to enhance the retention and pro-angiogenic capacity of hASCs following delivery in vivo. Additionally, priming strategies to augment the paracrine function of hASCs were developed and assessed.

Recognizing the importance of endogenous macrophages in the pro-regenerative function of hASCs, delivery using a previously-developed hydrogel system, composed of peptide-functionalized methacrylated glycol chitosan (MGC-RGD) and a copolymer of poly(ethylene glycol) and poly(trimethylene carbonate) (PEG(PTMC-A)2), was …


Formation Of A Vascular Regenerative Microenvironment Within Implantable Human Decellularized Adipose Tissue Bioscaffolds, Christopher Leclerc Sep 2019

Formation Of A Vascular Regenerative Microenvironment Within Implantable Human Decellularized Adipose Tissue Bioscaffolds, Christopher Leclerc

Electronic Thesis and Dissertation Repository

Cellular therapies targeted at stimulating therapeutic angiogenesis in individuals with critical limb ischemia (CLI) have been under intense investigation. Hematopoietic progenitor cells (HPC) derived from umbilical cord blood have been previously shown to support limb revascularization in animal models of CLI, despite limited cell survival at the site of ischemia. This study attempted to improve HPC survival after transplantation and prolong pro-angiogenic function using human decellularized adipose tissue (hDAT) as a novel cell delivery platform. Compared to HPC conventionally grown on tissue-cultured plastic, hDAT scaffolds were shown to promote viability and proliferation of seeded HPC, and had cell- instructive effects …


A New Generation Of Polymer/Ceramic Composite Biomaterials For Bone Regeneration, Mehrnaz Salarian Dec 2014

A New Generation Of Polymer/Ceramic Composite Biomaterials For Bone Regeneration, Mehrnaz Salarian

Electronic Thesis and Dissertation Repository

There is a substantial emerging interest for fundamental and applied research on the reinforcement of polymeric materials using nanotechnology. In the biomedical industry, development of novel bone cement composite materials with enhanced mechanical properties is of tremendous potential importance. The most universally used injectable bone cement is made of poly(methyl methacrylate) (PMMA); however, the major disadvantage of PMMA is its non-biodegradability. Polymers such as poly(propylene fumarate) (PPF) and polycaprolactone (PCL) are biodegradable, but suffer from a lack of mechanical properties. The aim of this research was to test the efficacy of these biodegradable polymers integrating nanotechnology for the development of …