Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Biomedical Engineering and Bioengineering

Ti-6al-4v Β Phase Selective Dissolution: In Vitro Mechanism And Prediction, Michael A Kurtz Dec 2023

Ti-6al-4v Β Phase Selective Dissolution: In Vitro Mechanism And Prediction, Michael A Kurtz

All Dissertations

Retrieval studies document Ti-6Al-4V β phase dissolution within total hip replacement systems. A gap persists in our mechanistic understanding and existing standards fail to reproduce this damage. This thesis aims to (1) elucidate the Ti-6Al-4V selective dissolution mechanism as functions of solution chemistry, electrode potential and temperature; (2) investigate the effects of adverse electrochemical conditions on additively manufactured (AM) titanium alloys and (3) apply machine learning to predict the Ti-6Al-4V dissolution state. We hypothesized that (1) cathodic activation and inflammatory species (H2O2) would degrade the Ti-6Al-4V oxide, promoting dissolution; (2) AM Ti-6Al-4V selective dissolution would occur …


An Experimental Study On The Mechanical Properties And Chemical Composition Of Lcd 3d Printed Specimens, Sebastian Gomez Jan 2023

An Experimental Study On The Mechanical Properties And Chemical Composition Of Lcd 3d Printed Specimens, Sebastian Gomez

Electronic Theses and Dissertations

Additive manufacturing technologies have been enhanced throughout the years yet have surprised the manufacturing industry due to their high-end surface finish and dimensional accuracy. Different experiments have been done to identify a specific phenomenon known in the vat-polymerization field. Distortion and dimensional inaccuracy tend to affect the overall properties of the process, either physical or chemical. This approach allows the understanding of how the physical properties have been affected and how to study the chemical properties to avoid this type of phenomenon. The chemical reaction between polymer and UV light has been studied and experimented with to the point that …


Development Of A Wireless Telemetry Load And Displacement Sensor For Orthopaedic Applications, William Anderson Jul 2021

Development Of A Wireless Telemetry Load And Displacement Sensor For Orthopaedic Applications, William Anderson

Electronic Thesis and Dissertation Repository

Due to sensor size and supporting circuitry, in vivo load and deformation measurements are currently restricted to applications within larger orthopaedic implants. The objective of this thesis is to repurpose a commercially available low-power, miniature, wireless, telemetric, tire-pressure sensor (FXTH87) to measure load and deformation for future use in biomechanical applications. The capacitive transducer membrane of the FXTH87 was modified, and a relationship was reported between applied compressive deformation and sensor signal value. The sensor package was embedded within a deformable enclosure to illustrate potential applications of the sensor for monitoring load. Finite element analysis was an effective tool to …


Tailoring Texture, Microstructure, And Shape Memory Behavior Of Niti Alloys Fabricated By L-Pbf-Am, Sayed Ehsan Saghaian N.E. Jan 2021

Tailoring Texture, Microstructure, And Shape Memory Behavior Of Niti Alloys Fabricated By L-Pbf-Am, Sayed Ehsan Saghaian N.E.

Theses and Dissertations--Mechanical Engineering

Laser Powder Bed Fusion (L-PBF) is one of the most promising Additive Manufacturing (AM) methods to fabricate near net-shape metallic materials for a wide range of applications such as patient-specific medical devices, functionally graded materials, and complex structures. NiTi shape memory alloys (SMAs) are of great interest due to a combination of unique features, such as superelasticity, shape memory effect, high ductility, work output, corrosion resistance, and biocompatibility that could be employed in many applications in automotive, aerospace, and biomedical industries. Due to the difficulties with traditional machining and forming of NiTi components, the ability to fabricate complex parts, tailor …


Fabrication And Characterization Of Collagen-Polypyrrole Constructs Using Direct-Ink Write Additive Manufacturing, Rooshan Arshad May 2019

Fabrication And Characterization Of Collagen-Polypyrrole Constructs Using Direct-Ink Write Additive Manufacturing, Rooshan Arshad

Electronic Thesis and Dissertation Repository

Current efforts in the tissue engineering field are being directed towards the creation of platforms which will facilitate in instructing cells towards biologically relevant outcomes such as stem cell differentiation and disease pathophysiology. Traditional fabrication methods serve as a limiting factor for the production of such platforms as they lack feature and geometric complexity. Additive Manufacturing (AM) offers advantage over said methods by affording designers creative freedom and great control over printed constructs. Such constructs can then be used to create appropriate models for study- ing a plethora of tissues and structures. An AM methodology for Direct-Ink Write (DIW) printing …


Design And Development Of A Multifunctional Surgical Device For Ground And Space-Based Surgical Applications., Brooke Elaine Barrow Apr 2018

Design And Development Of A Multifunctional Surgical Device For Ground And Space-Based Surgical Applications., Brooke Elaine Barrow

Electronic Theses and Dissertations

With the possibility of longer ventures into space, NASA will face many new medical challenges. The ability to surgically treat trauma and other disorders in reduced gravity requires reliable wound access, containment, and visualization. In collaboration with Carnegie Mellon University, the University of Louisville is currently developing the AISS (Aqueous Immersion Surgical System) to increase efficiency and control of the operative field in space-based surgeries. Reliable wound access and containment is achieved by placing a transparent wound-isolation dome securely over the wound-site and pressurizing it with a saline solution. Leak-free trocars provide access ports for various surgical instruments. This system …


Supporting Engineering Design Of Additively Manufactured Medical Devices With Knowledge Management Through Ontologies, Thomas Hagedorn Mar 2018

Supporting Engineering Design Of Additively Manufactured Medical Devices With Knowledge Management Through Ontologies, Thomas Hagedorn

Doctoral Dissertations

Medical environments pose a substantial challenge for engineering designers. They combine significant knowledge demands with large investment for new product development and severe consequences in the case of design failure. Engineering designers must contend with an often-chaotic environment to which they have limited access and familiarity, a user base that is difficult to engage and highly diverse in many attributes, and a market structure that often pits stakeholders against one another. As medical care in general moves towards personalized models and surgical tools towards less invasive options emerging manufacturing technologies in additive manufacturing offer significant potential for the design of …


Custom Software For The 3d Printing Of Patient Specific Plate Bending Templates In Pelvic Fracture Repair., Gordon B Lents Aug 2017

Custom Software For The 3d Printing Of Patient Specific Plate Bending Templates In Pelvic Fracture Repair., Gordon B Lents

Electronic Theses and Dissertations

The purpose of this work is to reduce the operative time and blood loss incurred during open reduction and internal fixation (ORIF) of traumatic pelvic injuries through the creation of patient specific bending templates for reconstruction plates. These templates are 3D printed in a resin capable of being sterilized and taken into the operating room so that bending may be performed by the surgeon before the patient is opened or by another team member in parallel with the surgeon.

A novel software extension was created in 3D modeling software to allow a surgeon to individually position screws on a pelvic …


Shape Memory Behavior Of Dense And Porous Niti Alloys Fabricated By Selective Laser Melting, Soheil Saedi Jan 2017

Shape Memory Behavior Of Dense And Porous Niti Alloys Fabricated By Selective Laser Melting, Soheil Saedi

Theses and Dissertations--Mechanical Engineering

Selective Laser Melting (SLM) of Additive Manufacturing is an attractive fabrication method that employs CAD data to selectively melt the metal powder layer by layer via a laser beam and produce a 3D part. This method not only opens a new window in overcoming traditional NiTi fabrication problems but also for producing porous or complex shaped structures. The combination of SLM fabrication advantages with the unique properties of NiTi alloys, such as shape memory effect, superelasticity, high ductility, work output, corrosion, biocompatibility, etc. makes SLM NiTi alloys extremely promising for numerous applications.

The SLM process parameters such as laser power, …


A Haptic Surface Robot Interface For Large-Format Touchscreen Displays, Mark Price Jul 2016

A Haptic Surface Robot Interface For Large-Format Touchscreen Displays, Mark Price

Masters Theses

This thesis presents the design for a novel haptic interface for large-format touchscreens. Techniques such as electrovibration, ultrasonic vibration, and external braked devices have been developed by other researchers to deliver haptic feedback to touchscreen users. However, these methods do not address the need for spatial constraints that only restrict user motion in the direction of the constraint. This technology gap contributes to the lack of haptic technology available for touchscreen-based upper-limb rehabilitation, despite the prevalent use of haptics in other forms of robotic rehabilitation. The goal of this thesis is to display kinesthetic haptic constraints to the touchscreen user …