Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

2019

Bioelectrical and Neuroengineering

Articles 1 - 17 of 17

Full-Text Articles in Biomedical Engineering and Bioengineering

Finding A Viable Neural Network Architecture For Use With Upper Limb Prosthetics, Maxwell Lavin Dec 2019

Finding A Viable Neural Network Architecture For Use With Upper Limb Prosthetics, Maxwell Lavin

Master of Science in Computer Science Theses

This paper attempts to answer the question of if it’s possible to produce a simple, quick, and accurate neural network for the use in upper-limb prosthetics. Through the implementation of convolutional and artificial neural networks and feature extraction on electromyographic data different possible architectures are examined with regards to processing time, complexity, and accuracy. It is found that the most accurate architecture is a multi-entry categorical cross entropy convolutional neural network with 100% accuracy. The issue is that it is also the slowest method requiring 9 minutes to run. The next best method found was a single-entry binary cross entropy …


Differentiating Epileptic From Psychogenic Nonepileptic Eeg Signals Using Time Frequency And Information Theoretic Measures Of Connectivity, Sarah Barnes Dec 2019

Differentiating Epileptic From Psychogenic Nonepileptic Eeg Signals Using Time Frequency And Information Theoretic Measures Of Connectivity, Sarah Barnes

Masters Theses

Differentiating psychogenic nonepileptic seizures from epileptic seizures is a difficult task that requires timely recording of psychogenic events using video electroencephalography (EEG). Interpretation of video EEG to distinguish epileptic features from signal artifacts is error prone and can lead to misdiagnosis of psychogenic seizures as epileptic seizures resulting in undue stress and ineffective treatment with antiepileptic drugs. In this study, an automated surface EEG analysis was implemented to investigate differences between patients classified as having psychogenic or epileptic seizures. Surface EEG signals were grouped corresponding to the anatomical lobes of the brain (frontal, parietal, temporal, and occipital) and central coronal …


Single-Cell Impedance Spectroscopy, David Paul Lange Dec 2019

Single-Cell Impedance Spectroscopy, David Paul Lange

Master's Theses

Impedance spectroscopy (IS) is an important tool for cell detection and characterization in medical and food safety applications. In this thesis, the Cal Poly Biofluidics Lab’s impedance spectroscopy system was re-evaluated and optimized for single-cell impedance spectroscopy. To evaluate the IS system, an impedance spectroscopy bioMEMS chip was fabricated in the Cal Poly Microfabcrication lab, software was developed to run IS experiments, and studies were run to validate the system. To explore IS optimization, Maxwell’s mixture theorem and the Schwartz-Christoffel transform were used to calculate an analytic impedance solution to the co-planar electrode system,a novel volume fraction to account for …


Investigation Of The Electrode Polarization Effect For Biosensor Applications, Anil Koklu Aug 2019

Investigation Of The Electrode Polarization Effect For Biosensor Applications, Anil Koklu

Mechanical Engineering Research Theses and Dissertations

My research focuses on electrokinetic transport. Particularly, in this dissertation, we focus on fabrication and testing of micro electrodes with nanostructured surfaces to minimize the electrode polarization (EP) effects for biosensor applications. In the first study, electrochemical deposition of gold nanoparticles on to planar gold electrodes was used to generate rough surfaces. Dendritic nanostructures that reduced EP up to two orders of magnitude was obtained by optimizing the deposition conditions. These structures also enhanced dielectrophoresis (DEP) response of our bio-chips, making them usable in physiological buffers. In further studies we discovered a universal scaling of EP in the frequency domain, …


Development Of A Low Profile, Endoscopic Implant For Long Term Brain Imaging, Benjamin Scott Kemp Aug 2019

Development Of A Low Profile, Endoscopic Implant For Long Term Brain Imaging, Benjamin Scott Kemp

Doctoral Dissertations

The increased public awareness of concussion and traumatic brain injury has motivated continued research into the brain, its functions, and especially its response to injury, with a focus on improving the brain’s repair capabilities. However, due to the critical nature of the tissue, it is currently difficult for researchers to acquire high resolution images below the cortex without sacrificing a lab animal. Sacrificing an animal greatly reduces the amount of data that can be obtained from it, making longitudinal studies unappealing or unfeasible because a large number of animals is needed to obtain useful data over multiple time points. Additionally, …


Impedance-Based Microfluidic Platform For Quantitative Biology, Amin Mansoorifar Jul 2019

Impedance-Based Microfluidic Platform For Quantitative Biology, Amin Mansoorifar

Mechanical Engineering Research Theses and Dissertations

Dielectric properties of biological cells are functions of cellular structure, content, state, and phenotype. Dielectric spectroscopy (DS) is a nondestructive method to characterize dielectric properties by measuring impedance data over a frequency range. This method has been widely used for various applications such as counting, sizing, and monitoring biological cells and particles. Recently, this method has been suggested to be utilized in various stages of the drug discovery process due to its low sample consumption and fast analysis time.

In this thesis, we have developed a lab-on-a-chip device that uses an electro-activated microwells array for capturing, making DS measurements on, …


Neurostimulator With Waveforms Inspired By Nature For Wearable Electro-Acupuncture, Jose Aquiles Parodi Amaya Jun 2019

Neurostimulator With Waveforms Inspired By Nature For Wearable Electro-Acupuncture, Jose Aquiles Parodi Amaya

LSU Doctoral Dissertations

The work presented here has 3 goals: establish the need for novel neurostimulation waveform solutions through a literature review, develop a neurostimulation pulse generator, and verify the operation of the device for neurostimulation applications.

The literature review discusses the importance of stimulation waveforms on the outcomes of neurostimulation, and proposes new directions for neurostimulation research that would help in improving the reproducibility and comparability between studies.

The pulse generator circuit is then described that generates signals inspired by the shape of excitatory or inhibitory post-synaptic potentials (EPSP, IPSP). The circuit analytical equations are presented, and the effects of the circuit …


Interpolated Perturbation-Based Decomposition As A Method For Eeg Source Localization, Gabriel Zelik Lipof Jun 2019

Interpolated Perturbation-Based Decomposition As A Method For Eeg Source Localization, Gabriel Zelik Lipof

Master's Theses

In this thesis, the perturbation-based decomposition technique developed by Szlavik [1] was used in an attempt to solve the inverse problem in EEG source localization. A set of dipole locations were forward modeled using a 4-layer sphere model of the head at uniformly distributed lead locations to form the vector basis necessary for the method. Both a two-dimensional and a pseudo-three-dimensional versions of the model were assessed with the two-dimensional model yielding decompositions with minimal error and the pseudo-three-dimensional version having unacceptable levels of error. The utility of interpolation as a method to reduce the number of data points to …


Feedforward And Feedback Signals In The Olfactory System, Srimoy Chakraborty May 2019

Feedforward And Feedback Signals In The Olfactory System, Srimoy Chakraborty

Graduate Theses and Dissertations

The conglomeration of myriad activities in neural systems often results in prominent oscillations. The primary goal of the research presented in this thesis was to study effects of sensory stimulus on the olfactory system of rats, focusing on the olfactory bulb (OB) and the anterior piriform cortex (aPC). Extracellular electrophysiological measurements revealed distinct frequency bands of oscillations in OB and aPC. However, how these oscillatory fluctuations help the animal to process sensory input is not clearly understood. Here we show high frequency oscillations in olfactory bulb carry feedforward signals to anterior piriform cortex whereas feedback from the aPC is predominantly …


Development Of A Myoelectric Detection Circuit Platform For Computer Interface Applications, Nickolas Andrew Butler Mar 2019

Development Of A Myoelectric Detection Circuit Platform For Computer Interface Applications, Nickolas Andrew Butler

Master's Theses

Personal computers and portable electronics continue to rapidly advance and integrate into our lives as tools that facilitate efficient communication and interaction with the outside world. Now with a multitude of different devices available, personal computers are accessible to a wider audience than ever before. To continue to expand and reach new users, novel user interface technologies have been developed, such as touch input and gyroscopic motion, in which enhanced control fidelity can be achieved. For users with limited-to-no use of their hands, or for those who seek additional means to intuitively use and command a computer, novel sensory systems …


Perturbation Based Decomposition Of Semg Signals, Rachel Huettinger Mar 2019

Perturbation Based Decomposition Of Semg Signals, Rachel Huettinger

Master's Theses

Surface electromyography records the motor unit action potential signals in the vicinity of the electrode to reveal information on muscle activation. Decomposition of sEMG signals for characterization of constituent motor unit action potentials in terms of amplitude and firing times is useful for clinical research as well as diagnosis of neurological disorders. Successful decomposition of sEMG signals would allow for pertinent motor unit action potential information to be acquired without discomfort to the subject or the need for a well-trained operator (compared with intramuscular EMG). To determine amplitudes and firing times for motor unit action potentials in an sEMG recording, …


Development Of An Astrocyte/Glioma Co-Culture System For Measuring Cellular Dynamics, Urna Kansakar Feb 2019

Development Of An Astrocyte/Glioma Co-Culture System For Measuring Cellular Dynamics, Urna Kansakar

Doctoral Dissertations

Gliomas are brain tumors that primarily arise from glial cells. Gliomas account for 70% of the brain tumors and they are more prevalent in older adults. About 60% of the people with gliomas experience at least one seizure. Brain tumors can grow and metastasize to neighboring areas, thereby destroying normal brain cells. In a brain tumor microenvironment, both malignant cancer cells and healthy brain cells are present. Studies have shown that astrocytes may have a role in tumor growth in the brain. Monocultures cannot evaluate interactions between two cell types and does not accurately represent in vivo conditions. Thus, a …


Design And Testing Of An Agonist-Antagonist Position-Impedance Controlled Myoelectric Prosthesis, Christopher Aymonin Jan 2019

Design And Testing Of An Agonist-Antagonist Position-Impedance Controlled Myoelectric Prosthesis, Christopher Aymonin

Theses and Dissertations

Intuitive prosthetic control is limited by the inability to easily convey intention and perceive physical requirements of the task. Rather than providing haptic feedback and allowing users to consciously control every component of manipulation, relegating some aspects of control to the device may simplify operation. This study focuses on the development and testing of a control scheme able to identify object stiffness and regulate impedance. The system includes an algorithm to detect the apparent stiffness of an object, a proportional nonlinear EMG control algorithm for interpreting a user’s desired grasp aperture, and an antagonistically acting impedance controller. Performance of a …


A Brain-Computer Interface For Closed-Loop Sensory Stimulation During Motor Training In Patients With Tetraplegia, Sarah Helen Thomas Jan 2019

A Brain-Computer Interface For Closed-Loop Sensory Stimulation During Motor Training In Patients With Tetraplegia, Sarah Helen Thomas

Theses and Dissertations--Biomedical Engineering

Normal movement execution requires proper coupling of motor and sensory activation. An increasing body of literature supports the idea that incorporation of sensory stimulation into motor rehabilitation practices increases its effectiveness. Paired associative stimulation (PAS) studies, in which afferent and efferent pathways are activated in tandem, have brought attention to the importance of well-timed stimulation rather than non-associative (i.e., open-loop) activation. In patients with tetraplegia resulting from spinal cord injury (SCI), varying degrees of upper limb function may remain and could be harnessed for rehabilitation. Incorporating associative sensory stimulation coupled with self-paced motor training would be a means for supplementing …


A Possible Link Between R-Wave Amplitude Alternans And T-Wave Alternans In Ecgs, Sahar Alaei Jan 2019

A Possible Link Between R-Wave Amplitude Alternans And T-Wave Alternans In Ecgs, Sahar Alaei

Theses and Dissertations--Biomedical Engineering

Sudden Cardiac Death (SCD) is the largest cause of natural deaths in the USA, accounting for over 300,000 deaths annually. The major reason for SCD is Ventricular Arrhythmia (VA). Therefore, there is need for exploration of approaches to predict increased risk for VA. Alternans of the T wave in the ECG (TWA) is widely investigated as a potential predictor of VA, however, clinical trials show that TWA has high negative predictive value but poor positive predictive value. A possible reason that TWA has a large number of false positives is that a pattern of alternans known as concordant alternans, may …


Prediction Of The Outcome In Cardiac Arrest Patients Undergoing Hypothermia Using Eeg Wavelet Entropy, Hana Moshirvaziri Jan 2019

Prediction Of The Outcome In Cardiac Arrest Patients Undergoing Hypothermia Using Eeg Wavelet Entropy, Hana Moshirvaziri

CGU Theses & Dissertations

Cardiac arrest (CA) is the leading cause of death in the United States. Induction of hypothermia has been found to improve the functional recovery of CA patients after resuscitation. However, there is no clear guideline for the clinicians yet to determine the prognosis of the CA when patients are treated with hypothermia. The present work aimed at the development of a prognostic marker for the CA patients undergoing hypothermia. A quantitative measure of the complexity of Electroencephalogram (EEG) signals, called wavelet sub-band entropy, was employed to predict the patients’ outcomes. We hypothesized that the EEG signals of the patients who …


Translational Modeling Of Non-Invasive Electrical Stimulation, Dennis Quangvinh Truong Jan 2019

Translational Modeling Of Non-Invasive Electrical Stimulation, Dennis Quangvinh Truong

Dissertations and Theses

Seminal work in the early 2000’s demonstrated the effect of low amplitude non-invasive electrical stimulation in people using neurophysiological measures (motor evoked potentials, MEPs). Clinical applications of transcranial Direct Current Stimulation (tDCS) have since proliferated, though the mechanisms are not fully understood. Efforts to refine the technique to improve results are on-going as are mechanistic studies both in vivo and in vitro. Volume conduction models are being applied to these areas of research, especially in the design and analysis of clinical montages. However, additional research on the parameterization of models remains.

In this dissertation, Finite Element Method (FEM) models of …