Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Biomedical Engineering and Bioengineering

Biomechanical Joint Demands And Functional Outcomes During Manual Wheelchair Use In Pediatric Patients With Spinal Cord Injury, Christine M. Aurit Dec 2014

Biomechanical Joint Demands And Functional Outcomes During Manual Wheelchair Use In Pediatric Patients With Spinal Cord Injury, Christine M. Aurit

Theses and Dissertations

The biomechanical demands of the upper extremities (UEs) during pediatric manual wheelchair (MWC) use have not been fully explored. Children who use MWCs for mobility engage in a range of functional activities that may place large biomechanical demands on the UEs leading to a high risk on overuse injuries. This study aims to analyze the kinematics and kinetics of pediatric manual wheelchair use during propulsion, starting, stopping and weight relief tasks. Fourteen pediatric patients with spinal cord injury were recruited and data were collected using a 14-camera Vicon MX motion analysis system (Oxford Metric Group, Oxford, UK) and a SmartWheel ...


Role Of Sensation In Altered Phalanx Grip Force In Persons With Stroke, Leah R. Enders Dec 2014

Role Of Sensation In Altered Phalanx Grip Force In Persons With Stroke, Leah R. Enders

Theses and Dissertations

Many individuals experience hand impairment after stroke leading to decreased ability to perform daily living activities. Previous research studies have investigated how stroke survivors' pinch grip control differs from healthy individuals, even though many individuals can only grasp with power grip after stroke. Furthermore, many stroke survivors experience tactile sensory deficit in their paretic limb in addition to motor deficit. It is currently unknown how stroke induced tactile sensory deficit affects power grip force directional control, which is important in terms of preventing object slippage and power grip normal force generation. Additionally it is unknown if power grip could be ...


The Effect Of Fixation Plate Length On Spinal Instability Following Anterior Cervical Plate Fixation For The Repair Of In Vitro Flexion-Distraction Injuries, Abdulaziz J. Al-Kuwari Sep 2014

The Effect Of Fixation Plate Length On Spinal Instability Following Anterior Cervical Plate Fixation For The Repair Of In Vitro Flexion-Distraction Injuries, Abdulaziz J. Al-Kuwari

Electronic Thesis and Dissertation Repository

Abstract:

The Effect of Fixation Plate Length on Spinal Instability Following Anterior Cervical Plate Fixation for the Repair of in Vitro Flexion-Distraction Injuries

Introduction: Anterior cervical decompression and fusion with a plate (ACDFP) is a commonly performed treatment following a traumatic injury to the subaxial cervical spine. The purpose of the presented work was to determine the biomechanical effect of plate length on cervical spine kinematic stability following ACDFP stabilization for a simulated traumatic injury.

Methods: Eleven fresh-frozen cadaveric C5-C6 and C6-C7 motion segments were examined in this study. To assess kinematics, flexibility testing was performed on each specimen using ...


Design Of The High-Speed Stereo Radiography System, John C. Ivester Iv Aug 2014

Design Of The High-Speed Stereo Radiography System, John C. Ivester Iv

Electronic Theses and Dissertations

Orthopaedic pathologies often involve disruption of the mechanical environment of a joint at/below the mm scale. The ability to measure biomechanical kinematics at the sub-mm scale is essential for obtaining valuable insight into pathologies, but small motions of the joints are difficult to quantify. Estimates of skeletal kinematics are commonly made from optical motion capture systems and markers placed on the skin. The error caused by external marker movement is largely avoided with x-ray motion capture. Dynamic radiography uses a series of x-ray images recorded at high-speed and captures in-vivo joint motion. Uncovering the mechanical foundation of orthopaedic pathologies ...


Implementation Of Analytical Fatigue Models Into Opensim To Predict The Effects Of Fatigue On Anterior Cruciate Ligament Loading, Michael A. Samann Jul 2014

Implementation Of Analytical Fatigue Models Into Opensim To Predict The Effects Of Fatigue On Anterior Cruciate Ligament Loading, Michael A. Samann

Mechanical & Aerospace Engineering Theses & Dissertations

The anterior cruciate ligament (ACL) provides stability to the knee joint while performing activities such as a side step cut. Neuromuscular fatigue, a reduction in muscle force producing capabilities, alters lower extremity mechanics while performing a side step cut and may increase the risk of ACL injury, particularly in females. Musculoskeletal modeling allows for the measurement of muscle forces, which are difficult to measure in-vivo. Therefore, musculoskeletal modeling, may improve our understanding of the effects of neuromuscular fatigue on muscle force production and loading of the ACL. Therefore, the purpose of this study was to develop a musculoskeletal model which ...


Dynamic Simulations And Data Mining Of Single-Leg Jump Landing: Implications For Anterior Cruciate Ligament Injury Prevention, Kristin Denise Morgan May 2014

Dynamic Simulations And Data Mining Of Single-Leg Jump Landing: Implications For Anterior Cruciate Ligament Injury Prevention, Kristin Denise Morgan

Doctoral Dissertations

It is estimated that 400,000 anterior cruciate ligament (ACL) injuries occur in the United States each year with the cost of ACL reconstruction surgery and rehabilitation exceeding $1 billion annually. The majority of ACL injuries are non-contact injuries occurring during cutting and jump landing movements. Because the majority of the injuries are non-contact injuries there is the potential to develop programs to reduce the risk of injury. Given our understanding of the joint kinematics and kinetics that place an individual at high risk for ACL, researchers have developed neuromuscular training programs that focus on improving muscle function in order ...


Development Of An In-Vitro Passive And Active Motion Simulator For The Investigation Of Shoulder Function And Kinematics, Joshua W. Giles Apr 2014

Development Of An In-Vitro Passive And Active Motion Simulator For The Investigation Of Shoulder Function And Kinematics, Joshua W. Giles

Electronic Thesis and Dissertation Repository

Injuries and degenerative diseases of the shoulder are common and may relate to the joint’s complex biomechanics, which rely primarily on soft tissues to achieve stability. Despite the prevalence of these disorders, there is little information about their effects on the biomechanics of the shoulder, and a lack of evidence with which to guide clinical practice. Insight into these disorders and their treatments can be gained through in-vitro biomechanical experiments where the achieved physiologic accuracy and repeatability directly influence their efficacy and impact.

This work’s rationale was that developing a simulator with greater physiologic accuracy and testing capabilities ...


Analysis And Modeling Of The Roles Of Actin-Myosin Interactions In Bladder Smooth Muscle Biomechanics, Seyed Omid Komariza Jan 2014

Analysis And Modeling Of The Roles Of Actin-Myosin Interactions In Bladder Smooth Muscle Biomechanics, Seyed Omid Komariza

Theses and Dissertations

Muscle mechanical behavior potentially plays an important role in some of the most common bladder disorders. These include overactive bladder, which can involve involuntary contractions during bladder filling, and impaired contractility or underactive bladder, which may involve weak or incomplete contractions during voiding. Actin-myosin cross-bridges in detrusor smooth muscle (DSM) are responsible for contracting and emptying the bladder. The total tension produced by muscle is the sum of its preload and active tensions. Studies suggest that actin-myosin cross-links are involved in adjustable preload stiffness (APS), which is characterized by a preload tension curve that can be shifted along the length ...


Design And Validation Of A Computational Model For Study Of Scapholunate Joint Kinematics, Edward J. Tremols Jan 2014

Design And Validation Of A Computational Model For Study Of Scapholunate Joint Kinematics, Edward J. Tremols

Theses and Dissertations

As computational power has increased, computational modeling has become a very promising tool to model the biomechanics of complex joint systems. Musculoskeletal computational models have become more complex when compared to original iterations which utilized a number of simplifications. This thesis utilized a three-dimensional computational model of the wrist joint structure to investigate scapholunate kinematics. The model accurately represented the bony anatomy of the wrist and hand and represented soft tissue structures such as ligaments, tendons, and other surrounding tissues. Creation of the model was done using commercially available computer-aided design and medical image processing software, and utilized the rigid ...


Potential Optimal Gait Performance Of Mauch S-N-S Prosthetic Knee Configurations As Predicted By Dynamic Modeling, Chih-Hao Chien Jan 2014

Potential Optimal Gait Performance Of Mauch S-N-S Prosthetic Knee Configurations As Predicted By Dynamic Modeling, Chih-Hao Chien

ETD Archive

Patients with prosthetic legs routinely suffer from abnormal gait patterns which can cause health issues and eventually lower the quality of their lives. Despite the half-century advance in the technology of prosthetic knees, from the purely mechanical to microprocessor controlled systems, patient testing suggests that very little progress has been made in the quality of the kinetics and kinematics of amputee gait. Moreover, the cost of microprocessor controlled prosthetic knees may be 10 times more than the purely mechanical knees. While prosthetic knees have become more complex and expensive, it is not proven that the prosthetic knee is a central ...