Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Biomedical Engineering and Bioengineering

Feasibility Of Pulsed Proton Induced Acoustics For 3d Dosimetry, Fahed M. Alsanea Apr 2014

Feasibility Of Pulsed Proton Induced Acoustics For 3d Dosimetry, Fahed M. Alsanea

Open Access Theses

Proton therapy has the potential to deposit its energy in tissue with high conformity to the tumor and significantly reduced integral dose to normal tissue compared to conventional radiation, such as x-rays. As a result, local control can be enhanced while reducing side-effects and secondary cancers. This is due to the way charged Particles deposit their energy or dose, where protons form a Bragg peak and establish a well-defined distal edge as a function of depth (range). To date, the dose delivered to a patient from proton therapy remains uncertain, in particular the positioning of the distal edge of the ...


Controlling Protein Release Using Biodegradable Microparticles, Benjamin Patrick Kline Apr 2014

Controlling Protein Release Using Biodegradable Microparticles, Benjamin Patrick Kline

Open Access Theses

Research in the field of protein therapeutics has exploded over the past decade and continues to grow in both academia and in industry. Protein drugs have advantages of being highly specific and highly active making them coveted targets for high profile disease states like cancer and multiple sclerosis. Unfortunately, their many advantages are complemented by their obstacles. Because proteins are highly active and highly specific, the window between efficacy and toxicity is very narrow and drug development can be long and arduous. In addition, protein activity is dependent on its specific folding conformation that is easily disrupted by a variety ...


Characteristics Of Fibrous Tissue At High Rates Of Tensile Loading, Benjamin J. Claus Apr 2014

Characteristics Of Fibrous Tissue At High Rates Of Tensile Loading, Benjamin J. Claus

Open Access Theses

The mechanical behavior of fibrous tissue is generally characterized at very low strain rates. However, many injuries occur at high rates of loading, such as those encountered in sporting events or vehicle accidents. An understanding of injury behavior requires the injury process to be recorded at high strain rates. Even at low rates of loading, the injury/failure within tissues occurs quickly. Furthermore, using conventional imaging systems, the surface of a specimen may be well documented throughout an experiment. However, damage formation does not necessarily begin at the surface of the specimen or even on the surface exposed to a ...


Biomechanics And Relaxivity For Functional Imaging Of Articular Cartilage Injury And Degradation, Kateri Elizabeth Fites Apr 2014

Biomechanics And Relaxivity For Functional Imaging Of Articular Cartilage Injury And Degradation, Kateri Elizabeth Fites

Open Access Theses

Osteoarthritis (OA) is a major debilitating health concern and economic burden worldwide, affecting 27 million people in the United States alone. OA often follows tissue injury, and is marked by changes in the structure and biomechanical function of cartilage, including breakdown of extracellular matrix molecules, loss of bulk tissue stiffness, and increase in articular surface friction and wear. Unlike bone and many other tissues, cartilage lacks an intrinsic capacity for regeneration. Advanced OA is typically diagnosed by patient symptoms (e.g. joint pain) and confirmed by radiographic evaluation of joint space narrowing. However, the application of functional imaging to assess ...


Developing A Hardware Platform For A Low-Power, Low-Cost, Size-Constrained Biomechanical Telemetry System, Aditya Balasubramanian Apr 2014

Developing A Hardware Platform For A Low-Power, Low-Cost, Size-Constrained Biomechanical Telemetry System, Aditya Balasubramanian

Open Access Theses

As sport-related traumatic brain injuries face increasing attention from the media and the general public, the need to be able to detect brain injury quickly, inexpensively and accurately is more important than ever. Commercially-available event-based systems exist that claim to achieve this goal; however, they collect little to no continuous-time data and primarily indicate when a pre-determined acceleration threshold has been exceeded under the unvalidated assumption that a potentially concussive blow has occurred. Recent findings by the Purdue Neurotrauma Group (PNG) have indicated that repeated exposure to both concussive and subconcussive blows can result in cumulative trauma disorder. To track ...