Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 13 of 13

Full-Text Articles in Biomedical Engineering and Bioengineering

Poly(Ester Amide) And Poly(Ethyl Glyoxylate) Nanoparticles For Controlled Drug Release, Amira Mohamed Moustafa Dec 2014

Poly(Ester Amide) And Poly(Ethyl Glyoxylate) Nanoparticles For Controlled Drug Release, Amira Mohamed Moustafa

Electronic Thesis and Dissertation Repository

The objective of this research was to develop polymeric nanoparticles (NPs) having improved drug release properties for drug delivery. Poly(ester amide)s (PEAs) are promising biodegradable polymers. PEA NPs were prepared via emulsification-evaporation and salting-out methods and optimized through by varying different processing parameters. Polymer-model drug conjugates based on PEAs containing L-aspartic acid and rhodamine B were synthesized and used for NP preparation. Release behavior was studied and compared to a control system with physically encapsulated rhodamine B. It was shown that the release of rhodamine B from the covalent system did not show the burst effect and exhibited ...


Laser-Assisted Surface Modification Of Hybrid Hydrogels To Prevent Bacterial Contamination And Protein Fouling, Guobang Huang Aug 2014

Laser-Assisted Surface Modification Of Hybrid Hydrogels To Prevent Bacterial Contamination And Protein Fouling, Guobang Huang

Electronic Thesis and Dissertation Repository

Silicone hydrogels have been extensively studied in the fields of contact lenses, tissue engineering, and drug delivery due to their good biocompatibility, high oxygen permeability, and proper light transmission. However, their applications in biomedical devices are limited by protein adsorption and bacterial contamination because of the hydrophobic surface of silicone, which will cause more irreversible protein adsorption. Several physical methods can be applied to create a hydrophilic surface on hydrogels, such as spin coating, physical vapor deposition, dip coating, drop casting, etc. Compared to the conventional methods, the matrix assisted pulsed laser evaporation (MAPLE) is suitable to produce biopolymer/polymer ...


Bioactive Sutures To Prevent Fibrosis In Injured Skeletal Muscle Tissue, Núria Codina Castillo Jul 2014

Bioactive Sutures To Prevent Fibrosis In Injured Skeletal Muscle Tissue, Núria Codina Castillo

Chemical & Biological Engineering Graduate Theses & Dissertations

Primitive animals and earl mammalian embryos have the capacity to respond to injury by regenerating the affected tissue. Most tissues in the human body, however, follow an inferior method of wound repair that finishes with an accumulation of collagen, also known as scar tissue. Scar tissue blocks progenitor cells from infiltrating the site of injury, resulting in incomplete regeneration. Slowing the fibrotic response would shift the wound repair process towards regeneration and considerably improve human health.

The primary goal of this project is to develop novel bioactive sutures for preventing fibrosis in injured skeletal muscle. This will be achieved by ...


Plasmonic Optical Sensors: Performance Analysis And Engineering Towards Biosensing, Peipei Jia Jun 2014

Plasmonic Optical Sensors: Performance Analysis And Engineering Towards Biosensing, Peipei Jia

Electronic Thesis and Dissertation Repository

Surface plasmon resonance (SPR) sensing for quantitative analysis of chemical reactions and biological interactions has become one of the most promising applications of plasmonics. This thesis focuses on performance analysis for plasmonic sensors and implementation of plamonic optical sensors with novel nanofabrication techniques.

A universal performance analysis model is established for general two-dimensional plasmonic sensors. This model is based on the fundamental facts of surface plasmon theory. The sensitivity only depends on excitation light wavelength as well as dielectric properties of metal and dielectrics. The expression involves no structure-specified parameters, which validates this formula in broad cases of periodic, quasiperiodic ...


Developent Of A Phospholipid Encapsulation Process For Quantum Dots To Be Used In Biologic Applications, Logan Grimes Jun 2014

Developent Of A Phospholipid Encapsulation Process For Quantum Dots To Be Used In Biologic Applications, Logan Grimes

Master's Theses and Project Reports

The American Cancer Society predicts that 1,665,540 people will be diagnosed with cancer, and 585,720 people will die from cancer in 2014. One of the most common types of cancer in the United States is skin cancer. Melanoma alone is predicted to account for 10,000 of the cancer related deaths in 2014. As a highly mobile and aggressive form of cancer, melanoma is difficult to fight once it has metastasized through the body. Early detection in such varieties of cancer is critical in improving survival rates in afflicted patients. Present methods of detection rely on visual ...


Comparing Virus Ultrafiltration Of Bacteriophages With Filtration Of Minute Virus Of Mice, Kent Smith May 2014

Comparing Virus Ultrafiltration Of Bacteriophages With Filtration Of Minute Virus Of Mice, Kent Smith

Theses and Dissertations

Industrial production of protein therapeutics demand rigorous testing and clearance of viruses. The U.S. Food and Drug Administration dictate the purity of pharmaceuticals with regards to viral contamination. As this testing is time consuming and expensive using mammalian cells and viruses, bacteriophages may provide a faster and cheaper alternative for membrane filtration processes. We used ultrafiltration membranes to filter protein solutions with viruses. Two bacteriophages were tested against membranes with two different pore sizes. These membranes were then tested by inverting the membrane's orientation. Flux measurements and log virus removal data were taken. Flux and log virus removal ...


Humidity Effect On The Structure Of Electrospun Core-Shell Pcl-Peg Fibers For Tissue Regeneration Applications, Adam P. Golin Apr 2014

Humidity Effect On The Structure Of Electrospun Core-Shell Pcl-Peg Fibers For Tissue Regeneration Applications, Adam P. Golin

Electronic Thesis and Dissertation Repository

With the aim of creating a biodegradable scaffold for tympanic membrane (TM) tissue regeneration, core-shell nanofibers composed of a poly(caprolactone) shell and a poly(ethylene glycol) core were created using a coaxial electrospinning technique. In order to create fibers with an optimal core-shell morphology, the effect of relative humidity (RH) on the core-shell nanofibers was systematically studied, with a FITC-BSA complex encapsulated in the core to act as a model protein. The core-shell nanofibers were electrospun at relative humidity values of 20, 25, 30, and 40% RH within a glove box outfitted for humidity control. The core-shell morphology of ...


Drug Delivery To The Respiratory Tract Using Dry Powder Inhalers, Doaa M.R. Mossaad Apr 2014

Drug Delivery To The Respiratory Tract Using Dry Powder Inhalers, Doaa M.R. Mossaad

Electronic Thesis and Dissertation Repository

Aerosols are an effective method to deliver therapeutic agents to the respiratory tract. Among aerosol generation systems, dry powder inhales have been attractive area of research for both local and systemic delivery of drugs. The challenge of any inhalation delivery system is to generate particles with an adequate range of particle sizes. In order to advance powder aerosol technologies, researchers have recognized the importance of investigating determinants affecting powder dispersion. The effect of particles’ surface characteristics, inhalation airflow rate, inhalation device, and development of an effective drug-carrier system are some of the fundamental areas that have been under investigation.

The ...


Strategies For Improving Oxygen Transport And Mechanical Strength In Alginate-Based Hydrogels, Joseph C. White Feb 2014

Strategies For Improving Oxygen Transport And Mechanical Strength In Alginate-Based Hydrogels, Joseph C. White

Doctoral Dissertations

Hydrogels have attracted significant interest over the past several decades due to their outstanding versatility as biomaterials. Alginate-based hydrogels are among the most popular studied due to their low cost, biocompatibility, and tunable physical properties. However, as with all hydrogels, persistent oxygen solubility and poor mechanical strength limits their utility for creating macroscopic devices for biomedical use. This thesis presents two strategies for improving oxygen transport and mechanical properties of alginate-based hydrogel. The former involves incorporating perfluorocarbons, hydrophobic compounds with very high oxygen solubility, into the formulation. The perfluorocarbons are stabilized by nonionic surfactants, Pluronics®, and the emulsion is entrapped ...


Surface Functionalization And Bioconjugation Of Nanoparticles For Biomedical Applications, Longyan Chen Jan 2014

Surface Functionalization And Bioconjugation Of Nanoparticles For Biomedical Applications, Longyan Chen

Electronic Thesis and Dissertation Repository

Colloidal inorganic nanoparticles (NPs) have been attracting considerable interest in biomedicine, from drug and gene delivery to imaging, sensing and diagnostics. It is essential to modify the surface of nanoparticles to have enhanced biocompatibility and functionality for the in vitro and in vivo applications, especially in delivering locally and recognizing biomolecules. Herein, the goal of this research work is to develop advanced NPs with well-tailored surface functionalities and/or bio-functionality for the applications in cell tracking and analytes detection.

In the first project, quantum dots incorporating with gelatin nanoparticles (QDs-GNPs) have been developed for bioimaging applications. Two different approaches have ...


Developing Genetic Tools For Geobacillus, Brittany Artale Jan 2014

Developing Genetic Tools For Geobacillus, Brittany Artale

Honors Theses and Capstones

Bacillus and Geobacillus are the primary bacterium used in biotechnology industries due to their ability to excrete extracellular materials such as proteins, enzymes and other byproducts. Bacillus subtilis, has a well-characterized competence machinery, giving way to characterized genetic tools. However, a significant problem associated with working with Bacillus is the regulation of endospore formation. An alternative to Bacillus is Geobacillus, a thermophilic bacterium. Thermophiles offer significant advantages over other bacteria as host organisms in biofuel, bioremediation, and biocatalyst processes. However, the genetic tools and competency associated with Geobacillus is still unknown. Through, genetic engineering the ability of ComK ...


Metabolic Modeling Of Secondary Metabolism In Plant Systems, Lisa M. Leone Jan 2014

Metabolic Modeling Of Secondary Metabolism In Plant Systems, Lisa M. Leone

Masters Theses

In the first part of this research, we constructed a Genome scale Metabolic Model (GEM) of Taxus cuspidata, a medicinal plant used to produce paclitaxel (Taxol®). The construction of the T. cuspidata GEM was predicated on recent acquisition of a transcriptome of T. cuspidata metabolism under methyl jasmonate (MJ) elicited conditions (when paclitaxel is produced) and unelicited conditions (when paclitaxel is not produced). Construction of the draft model, in which transcriptomic data from elicited and unelicited conditions were included, utilized tools including the ModelSEED developed by Argonne National Laboratory. Although a model was successfully created and gapfilled by ModelSEED using ...


Utilizing Dielectrophoresis To Determine The Physiological Differences Of Eukaryotic Cells, Tayloria Nicole Gail Adams Jan 2014

Utilizing Dielectrophoresis To Determine The Physiological Differences Of Eukaryotic Cells, Tayloria Nicole Gail Adams

Dissertations, Master's Theses and Master's Reports - Open

Type 1 diabetes affects over 108,000 children, and this number is steadily increasing. Current insulin therapies help manage the disease but are not a cure. Over a child’s lifetime they can develop kidney disease, blindness, cardiovascular disease and many other issues due to the complications of type 1 diabetes. This autoimmune disease destroys beta cells located in the pancreas, which are used to regulate glucose levels in the body. Because there is no cure and many children are affected by the disease there is a need for alternative therapeutic options that can lead to a cure.

Human mesenchymal ...