Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Biomedical Engineering and Bioengineering

Bioerodible Calcium Sulfate Bone Grafting Substitutes With Tailored Drug Delivery Capabilities, Bryan R. Orellana Jan 2014

Bioerodible Calcium Sulfate Bone Grafting Substitutes With Tailored Drug Delivery Capabilities, Bryan R. Orellana

Theses and Dissertations--Biomedical Engineering

Bone regeneration or augmentation is often required prior to or concomitant with implant placement. With the limitations of many existing technologies, a biologically compatible synthetic bone grafting substitute that is osteogenic, bioerodible, and provides spacing-making functionality while acting as a drug delivery vehicle for bioactive molecules could provide an alternative to ‘gold standard’ techniques.

In the first part of this work, calcium sulfate (CS) space-making synthetic bone grafts with uniformly embedded poly(β-amino ester) (PBAE) biodegradable hydrogel particles was developed to allow controlled release of bioactive agents. The embedded gel particles’ influence on the physical and chemical characteristics of CS was …


The Effects Of Hydrostatic Pressure On Early Endothelial Tubulogenic Processes, Ryan M. Underwood Jan 2013

The Effects Of Hydrostatic Pressure On Early Endothelial Tubulogenic Processes, Ryan M. Underwood

Theses and Dissertations--Biomedical Engineering

The effects of mechanical forces on endothelial cell function and behavior are well documented, but have not been fully characterized. Specifically, fluid pressure has been shown to elicit physical and chemical responses known to be involved in the initiation and progression of endothelial cell-mediated vascularization. Central to the process of vascularization is the formation of tube-like structures. This process—tubulogenesis—is essential to both the physiological and pathological growth of tissues. Given the known effects of pressure on endothelial cells and its ubiquitous presence in the vasculature, we investigated pressure as a magnitude-dependent parameter for the regulation of endothelial tubulogenic activity. To …