Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Biomedical Engineering and Bioengineering

Mechanical Failure Of Chorioamnion And Cervical Tissue: Contributions To Preterm And Term Birth, Brandi Nicole Briggs Jul 2014

Mechanical Failure Of Chorioamnion And Cervical Tissue: Contributions To Preterm And Term Birth, Brandi Nicole Briggs

Mechanical Engineering Graduate Theses & Dissertations

Despite significant advances in medical research, spontaneous preterm birth (SPTB) rates have not changed appreciably in over 100 years. SPTB is a global problem affecting 13 million babies annually and continues to be the leading cause of death among infants. During pregnancy, the cervix and chorioamnion (CA), the sac that surrounds the fetus during pregnancy, provide critical structural support for the growing fetus that requires optimum maintenance of tissue properties for sustaining pregnancy. This dissertation aims to elucidate the events leading to tissue failure in pregnancy by evaluating detrimental alterations in the extracellular matrix (ECM) chemistry and organization and tissue ...


The Effects Of Matrix Elasticity, Composition, And Exogenous Growth Factors On The Vascular Differentiation Of Mesenchymal Stem Cells, Kathryn Anne Wingate Jan 2013

The Effects Of Matrix Elasticity, Composition, And Exogenous Growth Factors On The Vascular Differentiation Of Mesenchymal Stem Cells, Kathryn Anne Wingate

Mechanical Engineering Graduate Theses & Dissertations

Cardiovascular diseases are the leading cause of death in the western world. Regeneration of functional vascular tissue remains a critical barrier to successful treatment of these diseases. Attempts to produce functional vascular tissue with autogenous vascular cells have limited success due to the need for invasive surgery. Mesenchymal stem cells (MSCs) are a powerful cellular alternative for vascular regeneration as they are easily obtainable, multipotent, and thrombo-resistant. Currently, the mechanisms that drive MSC differentiation to healthy or diseased vascular phenotypes are not well understood. There is a critical need to define the factors in the cellular microenvironment that guide MSC ...