Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Biomedical Engineering and Bioengineering

Zonal Articular Cartilage Possesses Complex Mechanical Behavior Spanning Multiple Length Scales: Dependence On Chemical Heterogeneity, Anisotropy, And Microstructure, Joseph Anders Wahlquist Jan 2017

Zonal Articular Cartilage Possesses Complex Mechanical Behavior Spanning Multiple Length Scales: Dependence On Chemical Heterogeneity, Anisotropy, And Microstructure, Joseph Anders Wahlquist

Mechanical Engineering Graduate Theses & Dissertations

This work focused on characterizing the mechanical behavior of biological material in physiologically relevant conditions and at sub millimeter length scales. Elucidating the time, length scale, and directionally dependent mechanical behavior of cartilage and other biological materials is critical to adequately recapitulate native mechanosensory cues for cells, create computational models that mimic native tissue behavior, and assess disease progression. This work focused on three broad aspects of characterizing the mechanical behavior of articular cartilage. First, we sought to reveal the causes of time-dependent deformation and variation of mechanical properties with distance from the articular surface. Second, we investigated size dependence ...


Zonal Articular Cartilage Possesses Complex Mechanical Behavior Spanning Multiple Length Scales: Dependence On Chemical Heterogeneity, Anisotropy, And Microstructure, Joseph Anders Wahlquist Jan 2017

Zonal Articular Cartilage Possesses Complex Mechanical Behavior Spanning Multiple Length Scales: Dependence On Chemical Heterogeneity, Anisotropy, And Microstructure, Joseph Anders Wahlquist

Mechanical Engineering Graduate Theses & Dissertations

This work focused on characterizing the mechanical behavior of biological material in physiologically relevant conditions and at sub millimeter length scales. Elucidating the time, length scale, and directionally dependent mechanical behavior of cartilage and other biological materials is critical to adequately recapitulate native mechanosensory cues for cells, create computational models that mimic native tissue behavior, and assess disease progression. This work focused on three broad aspects of characterizing the mechanical behavior of articular cartilage. First, we sought to reveal the causes of time-dependent deformation and variation of mechanical properties with distance from the articular surface. Second, we investigated size dependence ...


Sensorimotor Adaptation In Whole-Body Postural Control, Alison Pienciak-Siewert Jan 2016

Sensorimotor Adaptation In Whole-Body Postural Control, Alison Pienciak-Siewert

Mechanical Engineering Graduate Theses & Dissertations

The ability to maintain stable, upright standing is a critical component of our daily activities. This ability requires that we generate appropriate postural control when making voluntary movements and when responding to perturbations, and appropriately adapt that control to compensate for changing conditions. Despite this, adaptation of whole-body postural control is not well understood.

This dissertation investigates the control strategies involved in the adaptation of whole-body postural control and how well this learning transfers to different environments. We used an experimental paradigm in which subjects made reaching movements while standing and holding the handle of a force-generating robotic arm that ...


The Effects Of Matrix Elasticity, Composition, And Exogenous Growth Factors On The Vascular Differentiation Of Mesenchymal Stem Cells, Kathryn Anne Wingate Jan 2013

The Effects Of Matrix Elasticity, Composition, And Exogenous Growth Factors On The Vascular Differentiation Of Mesenchymal Stem Cells, Kathryn Anne Wingate

Mechanical Engineering Graduate Theses & Dissertations

Cardiovascular diseases are the leading cause of death in the western world. Regeneration of functional vascular tissue remains a critical barrier to successful treatment of these diseases. Attempts to produce functional vascular tissue with autogenous vascular cells have limited success due to the need for invasive surgery. Mesenchymal stem cells (MSCs) are a powerful cellular alternative for vascular regeneration as they are easily obtainable, multipotent, and thrombo-resistant. Currently, the mechanisms that drive MSC differentiation to healthy or diseased vascular phenotypes are not well understood. There is a critical need to define the factors in the cellular microenvironment that guide MSC ...