Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Biomedical Engineering and Bioengineering

Thermal Fusion For Sutureless Closure: Devices, Composition, Methods, Eric Anthony Kramer Jan 2018

Thermal Fusion For Sutureless Closure: Devices, Composition, Methods, Eric Anthony Kramer

Mechanical Engineering Graduate Theses & Dissertations

As minimally invasive surgical techniques progress, the demand for reliable ligation is pronounced. The surgical advantages of energy-based vessel sealing exceed those of traditional, compression-based ligatures in procedures sensitive to duration, foreign bodies, and recovery time alike. While the use of energy-based devices to seal or transect vasculature and connective tissue bundles is widespread, the breadth of heating strategies and energy dosimetry used between devices underscores an uncertainty as to the molecular nature of the sealing mechanism and induced tissue bond. Further, energy-based techniques (e.g., tissue “fusion” or tissue “welding”) exhibit promise for the closure, repair and functional recovery ...


Engineering The Phospholipid Monolayer On Fluorocarbon, Hydrocarbon, And Liquid Crystal Nanodroplets For Applications In Biosensing, Rajarshi Chattaraj Jan 2018

Engineering The Phospholipid Monolayer On Fluorocarbon, Hydrocarbon, And Liquid Crystal Nanodroplets For Applications In Biosensing, Rajarshi Chattaraj

Mechanical Engineering Graduate Theses & Dissertations

Nanodroplets (NDs) are liquid-in-liquid dispersions of ~100-800 nm size range that are often stabilized by a shell of lipids, polymer, proteins, or surfactants. NDs have been explored for a variety of biomedical applications, mostly involving drug formulation and delivery. However, the unique properties of encapsulated liquids, and the effects of interfacial chemistry on these properties, makes NDs potentially powerful candidates for new biosensing technologies. This dissertation explores different oil-in-water or fluorocarbon-in-water ND systems for in-solution sensing of biomarkers as both a platform for diagnostic assays and as a precursor to in vivo biosensing. Nanodroplets, because of their size, provide a ...