Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Biomedical Engineering and Bioengineering

Rotary Pump Speed Modulation To Produce Pulsatile Flow And Ventricular Volume Unloading., Connor Joseph Smith Aug 2018

Rotary Pump Speed Modulation To Produce Pulsatile Flow And Ventricular Volume Unloading., Connor Joseph Smith

Electronic Theses and Dissertations

Background: Continuous-flow (CF) left ventricular assist devices (LVADs) have gained widespread clinical acceptance as a treatment option for advanced heart failure (HF); however, they have also been associated with an increased risk of adverse events, including gastrointestinal bleeding, aortic insufficiency, and hemorrhagic stroke. It has been hypothesized that the increase in adverse event incidence may be due in part to diminished vascular pulsatility and high shear stress when CF-LVADs are operated at fixed speeds. Previous studies have shown that pump speed modulation generates greater levels of pulsatility in rotary pumps than when operated at fixed speeds. The objective of this ...


Design And Development Of A Multifunctional Surgical Device For Ground And Space-Based Surgical Applications., Brooke Elaine Barrow Apr 2018

Design And Development Of A Multifunctional Surgical Device For Ground And Space-Based Surgical Applications., Brooke Elaine Barrow

Electronic Theses and Dissertations

With the possibility of longer ventures into space, NASA will face many new medical challenges. The ability to surgically treat trauma and other disorders in reduced gravity requires reliable wound access, containment, and visualization. In collaboration with Carnegie Mellon University, the University of Louisville is currently developing the AISS (Aqueous Immersion Surgical System) to increase efficiency and control of the operative field in space-based surgeries. Reliable wound access and containment is achieved by placing a transparent wound-isolation dome securely over the wound-site and pressurizing it with a saline solution. Leak-free trocars provide access ports for various surgical instruments. This system ...


Design, Development, And Characterization Of Breathforce : A Respiratory Training System For Patients With Spinal Cord Injuries., Kevin L Tran Dec 2017

Design, Development, And Characterization Of Breathforce : A Respiratory Training System For Patients With Spinal Cord Injuries., Kevin L Tran

Electronic Theses and Dissertations

Pulmonary and cardiovascular dysfunction are consistently reported as the leading causes of morbidity and mortality among the 1,275,000 people who are living with chronic spinal cord injury (SCI) in the United States. Respiratory-cardiovascular complications from neurological disorders (primarily COPD and sleep apnea) are currently the number one cause of death and disability in the US.

The main goal of this project is to develop an inspiratory-expiratory training device for use in the rehabilitation of patients with respiratory motor and cardiovascular deficits that incorporates existing technologies and promotes successful training methodologies performed at the clinic and at home.

An ...


A Novel Approach To Assess Minimally Invasive Surgical Device Failure Utilizing Adverse Event Outcome Severity And Design Complexity., Marie K. Riggs Dec 2017

A Novel Approach To Assess Minimally Invasive Surgical Device Failure Utilizing Adverse Event Outcome Severity And Design Complexity., Marie K. Riggs

Electronic Theses and Dissertations

Medical device failure and misuse have the potential to cause serious injury and death. Given the intricate nature of the instruments utilized specifically in minimally invasive surgery (MIS), users and manufacturers of surgical devices share a responsibility in preventing user error and device failure. A novel approach was presented for the evaluation of minimally invasive device failures, which involved assessing the severity of adverse event outcomes associated with the failures modes and investigating aspects of the devices’ design that may contribute to failure. The goals of this research were to 1) characterize the design attributes, failure modes, and adverse events ...


Biomechanical Testing Of An Exercise For Strengthening The Proximal Femur., Alyssa Osbourne Aug 2017

Biomechanical Testing Of An Exercise For Strengthening The Proximal Femur., Alyssa Osbourne

Electronic Theses and Dissertations

Based on the principles of cutting edge bone remodeling research, a unique therapeutic exercise device was designed specifically to improve bone quality at the most critical location of the proximal femur prone to fracture: the superior-lateral femoral neck where the fracture first initiates during a fall. The exercise/device is intended to work by inducing enough strain in the bone to stimulate the body’s natural bone remodeling mechanisms to increase bone density in the proximal femur and consequently prevent a fracture from arising if a fall to the side does occur.

In order to test the proposed exercise, experiments ...


Development And Evaluation Of A Biocompatible Electroactive Sensor For Continuous Blood Pressure Measurement., Scott D. Cambron May 2017

Development And Evaluation Of A Biocompatible Electroactive Sensor For Continuous Blood Pressure Measurement., Scott D. Cambron

Electronic Theses and Dissertations

Piezo-active composites have been implemented for sensing and transduction for decades. The 0-3 ceramic/polymer composite is one of the most common composite types used for sensing applications, owing to their tailorable properties of the two-phase composition, consisting of a three-dimensionally connected polymer/rubber matrix (inactive phase) with a dispersion of isolated piezo-ceramic particles (active phase). This thesis describes a method to develop novel biocompatible perivascular band comprised of a two-phase piezo-active composite to be fabricated using simple manufacturing processes. Biomaterials such as tissue scaffolds comprised of silk fibroin (SF) and chitosan (CS), and biocompatible soft rubbers will be implemented ...


Development Of A Directional Bone Reaming System., Richard J Ackermann May 2017

Development Of A Directional Bone Reaming System., Richard J Ackermann

Electronic Theses and Dissertations

Preparation of long bones such as the femur or tibia for placement of intramedullary devices for the treatment of fractures usually involves reaming with a series of central cutters driven by a drill-like device with a flexible shaft over a guide wire. The reamers sequentially enlarge the intramedullary canal into a tunnel of circular cross-section and a diameter appropriate for the procedure. The current technology is concentric, meaning that the system is self-centering within the original intramedullary canal and the expansion is symmetric with respect to the original centerline. A novel system for laterally deflecting the head of a 12mm ...


Psychophysiological Analysis Of A Pedagogical Agent And Robotic Peer For Individuals With Autism Spectrum Disorders., Mohammad Nasser Saadatzi Dec 2016

Psychophysiological Analysis Of A Pedagogical Agent And Robotic Peer For Individuals With Autism Spectrum Disorders., Mohammad Nasser Saadatzi

Electronic Theses and Dissertations

Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by ongoing problems in social interaction and communication, and engagement in repetitive behaviors. According to Centers for Disease Control and Prevention, an estimated 1 in 68 children in the United States has ASD. Mounting evidence shows that many of these individuals display an interest in social interaction with computers and robots and, in general, feel comfortable spending time in such environments. It is known that the subtlety and unpredictability of people’s social behavior are intimidating and confusing for many individuals with ASD. Computerized learning environments and robots, however, prepare a ...