Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Biomedical Engineering and Bioengineering

Continuous, Non-Destructive Detection Of Surface Bacterial Growth With Bioinspired Vascularized Polymers, Brandon Dixon Aug 2022

Continuous, Non-Destructive Detection Of Surface Bacterial Growth With Bioinspired Vascularized Polymers, Brandon Dixon

Electronic Theses and Dissertations

Reducing or eliminating bacteria on surfaces is vital for medical devices, drinking water quality, and industrial processes. Evaluating surface bacterial growth at buried interfaces can be problematic due to the time-consuming disassembly process required for obtaining standard surface samples. In this work, a continuous, non-destructive, and reusable method was developed to detect surface bacterial growth at buried interfaces. Inspired by vascular systems in nature that permit chemical communication between the surface and underlying tissues of an organism, bacterial-specific signals diffusing from cells on the surface were detected in channels filled with an inert carrier fluid embedded in a polymer matrix. …


Handling And Manipulation Of Water- And Air- Borne Biological Samples Using Liquid-Infused Surfaces, Daniel P. Regan Apr 2021

Handling And Manipulation Of Water- And Air- Borne Biological Samples Using Liquid-Infused Surfaces, Daniel P. Regan

Electronic Theses and Dissertations

Research on novel materials to handling water- and airborne samples for biological threats analysis is in great demand due to the COVID-19 pandemic. Work conducted on a new field of material science, called liquid-infused surfaces, demonstrate strong potential for the handling and manipulation of biological samples. As a result of the field’s infancy, only a limited number of studies have explored how liquid-infused surfaces can apply droplet manipulation strategies to address real-world problems. Presented in this dissertation are two platforms that leverage liquid-infused surfaces to address the challenges associated with handling water- and airborne biological samples. When dealing with waterborne …


Materials Design With Polylactic Acid-Polyethylene Glycol Blends Using 3d Printing And For Medical Applications., Jeremiah R. Bauer Apr 2018

Materials Design With Polylactic Acid-Polyethylene Glycol Blends Using 3d Printing And For Medical Applications., Jeremiah R. Bauer

Electronic Theses and Dissertations

This thesis is an examination of two material systems derived from polylactic acid (PLA) and polyethylene glycol (PEG). PLA is a polymer commonly sourced from renewable sources such as starches and sugars. It is a relatively strong, biodegradable polymer, making it ideal for use in the body. Even though it has a relative high strength, PLA is also brittle leading to the use of plasticizers to increase flexibility. One such plasticizer is PEG, which is a material that can exist at room temperature as either a thin liquid, or a hard waxy solid depending on the molecular weight. The first …


A Multi-Channel 3d-Printed Bioreactor For Evaluation Of Growth And Production In The Microalga Dunaliella Sp, Cristian A. Cox Dec 2016

A Multi-Channel 3d-Printed Bioreactor For Evaluation Of Growth And Production In The Microalga Dunaliella Sp, Cristian A. Cox

Electronic Theses and Dissertations

We explored the capabilities of additive manufacturing using a photo-cured jetted material 3D printer to manufacture a milli-microfluidic device with direct application in microalgae Dunaliella sp growth and intracellular compounds biosynthesis tests. A continuous microbioreactor for microalgae culture was CAD designed and successfully built in 1 hour and 49 minutes using black photopolymer cured by UV and a support material. The microreactor was made up of 2 parts including the bioreactor itself and a microchannel network for culture media fluids and microalgae. Both parts were assembled to form a single unit. Additional optical and auxiliar components were added. An external …