Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

Doctoral Dissertations

2019

Discipline
Institution
Keyword

Articles 1 - 14 of 14

Full-Text Articles in Biomedical Engineering and Bioengineering

Predictive Simulation Of Human Movement And Applications To Assistive Device Design And Control, Vinh Nguyen Nov 2019

Predictive Simulation Of Human Movement And Applications To Assistive Device Design And Control, Vinh Nguyen

Doctoral Dissertations

Predictive simulation based on dynamic optimization using musculoskeletal models is a powerful approach for studying biomechanics of human gait. Predictive simulation can be used for a variety of applications from designing assistive devices to testing theories of motor controls. However, one of the challenges in formulating the predictive dynamic optimization problem is that the cost function, which represents the underlying goal of the walking task (e.g., minimal energy consumption) is generally unknown and is assumed a priori. While different studies used different cost functions, the qualities of the gaits with those cost functions were often not provided. Therefore, this dissertation …


Bioinspired Complex Nanoarchitectures By Dna Supramolecular Polymerization, Laura A. Lanier Oct 2019

Bioinspired Complex Nanoarchitectures By Dna Supramolecular Polymerization, Laura A. Lanier

Doctoral Dissertations

Bioinspired nanoarchitectures are of great interest for applications in fields such as nanomedicine, tissue engineering, and biosensing. With this interest, understanding how the physical properties of these complex nanostructures relate to their function is increasingly important. This dissertation describes the creation of complex nanoarchitectures with controlled structure and the investigation of the effect of nanocarrier physical properties on cell uptake for applications in nanomedicine. DNA self-assembly by supramolecular polymerization was chosen to create complex nanostructures of controlled architectures. We demonstrated that the supramolecular polymerization of DNA known as hybridization chain reaction (HCR) is in fact a living polymerization. The living …


Engineering Nanomaterials For Imaging And Therapy Of Bacteria And Biofilm-Associated Infections, Akash Gupta Oct 2019

Engineering Nanomaterials For Imaging And Therapy Of Bacteria And Biofilm-Associated Infections, Akash Gupta

Doctoral Dissertations

Infections caused by multidrug-resistant (MDR) bacteria pose a serious global burden of mortality, causing thousands of deaths each year. The “superbug” risk is further exacerbated by chronic infections generated from antibiotic-resistant biofilms that are highly resistant to available treatments. Synthetic macromolecules such as polymers and nanoparticles have emerged as promising antimicrobials. Moreover, ability to modulate nanomaterial interaction with bacterial cellular systems plays a pivotal role in improving the efficacy of the strategy. In the initial studies on engineering nanoparticle surface chemistry, I investigated the role played by surface ligands in determining the antimicrobial activity of the nanoparticles. In further study, …


Electrolytic Metallization Of Halloysite Nanotubes And Antimicrobial Applications, Ahmed Humayun Oct 2019

Electrolytic Metallization Of Halloysite Nanotubes And Antimicrobial Applications, Ahmed Humayun

Doctoral Dissertations

Due to increased reports of infections and biofouling arising from the use of invasive medical devices, novel antimicrobial agents with suitable anti-biofouling properties are critically needed. Transition metals exhibit substantial antimicrobial activity; however, their use is limited because of their inherent toxicity to eukaryotic cells. In this regard, naturally occurring halloysite clay nanotubes (HNTs) show significant promise. HNTs possess a high surface area for adsorption while its hollow lumen can be used for loading different materials.

Herein, we demonstrate an electrolytic method for generating and depositing metal nanoparticles (NPs) on the HNTs outer surface and we propose an optimized method …


Application Of Halloysite Nanotubes In Bone Disease Remediation And Bone Regeneration, Yangyang Luo Oct 2019

Application Of Halloysite Nanotubes In Bone Disease Remediation And Bone Regeneration, Yangyang Luo

Doctoral Dissertations

Customized patient therapy has been a major research focus in recent years. There are two research fields that have made a significant contribution to realizing individualized-based treatment: targeted drug delivery and three-dimensional (3D) printing technology. With benefit from the advances in nanotechnology and biomaterial science, various drug delivery systems have been established to provide precise control of therapeutic agents release in time and space. The emergence of three-dimensional (3D) printing technology enables the fabrication of complicated structures that effectively mimic native tissues and makes it possible to print patient-specific implants. My dissertation research used a clay nanoparticle, halloysite, to develop …


Development Of A Low Profile, Endoscopic Implant For Long Term Brain Imaging, Benjamin Scott Kemp Aug 2019

Development Of A Low Profile, Endoscopic Implant For Long Term Brain Imaging, Benjamin Scott Kemp

Doctoral Dissertations

The increased public awareness of concussion and traumatic brain injury has motivated continued research into the brain, its functions, and especially its response to injury, with a focus on improving the brain’s repair capabilities. However, due to the critical nature of the tissue, it is currently difficult for researchers to acquire high resolution images below the cortex without sacrificing a lab animal. Sacrificing an animal greatly reduces the amount of data that can be obtained from it, making longitudinal studies unappealing or unfeasible because a large number of animals is needed to obtain useful data over multiple time points. Additionally, …


Walking For Object Transport: An Examination Of The Coordinative Adaptations To Locomotor, Perceptual, And Manual Task Constraints, Avelino Amado Jul 2019

Walking For Object Transport: An Examination Of The Coordinative Adaptations To Locomotor, Perceptual, And Manual Task Constraints, Avelino Amado

Doctoral Dissertations

The goal of this dissertation was to understand how the intrinsic dynamics of gait adapt to support the performance of an ecologically relevant object transport task. A common object transport task is walking with a cup of water. Because the water can move relatively independent of the cup, the cup and water system is classified as a complex object. To model this task participants carried a cup with a wooden lid placed on top. On the lid there was a circular region with the same circumference as the cup and a ball. The object of the task was to keep …


Two And Three-Dimensional Models For Material And Cells Interaction, Nam H. Nguyen May 2019

Two And Three-Dimensional Models For Material And Cells Interaction, Nam H. Nguyen

Doctoral Dissertations

Three-dimensional (3D) cell spheroid model has been long considered a better model to mimic in vivo physiology compared to two-dimensional (2D) cell culture model. Traditional 2D cell models provide a simple, convenient and quick technique for drug screening but fail to simulate the complexity and heterogeneity of cells in the in vivo environment. The last few decades have remarked substantial progress toward the advancement of three-dimensional (3D) cell cultures as systems which better mimic cellcell and cell-matrix interaction in the in vivo physiology. Nowadays, 3D cell models have been emerging, not only as an important approach in drug discovery and …


Direct Printing/Patterning Of Key Components For Biosensor Devices, Yiliang Zhou Mar 2019

Direct Printing/Patterning Of Key Components For Biosensor Devices, Yiliang Zhou

Doctoral Dissertations

Recently, biosensor devices, especially wearable devices for monitoring human health, have attracted significant interests and meanwhile, they have a huge market. These wearable biosensor devices usually consist of several key components, including microfluidics, biosensing elements and power supply. Though advanced sensing platforms have been extensively explored, high manufacturing fee and lack of practical functions are the main reasons that most of devices and techniques are still out of reach for potential users. This dissertation focuses on fabricating these key components for biosensor devices via advanced printing/patterning techniques, such as inkjet-printing and nanoimprinting. These fabrication techniques can be potentially extended to …


Building The Outer Membrane Protein G (Ompg) Nanopore Library: From The Discrimination Of Biotin-Binding Proteins In Serum To Resolving Human Carbonic Anhydrase From Human Red Blood Cells, Bib Yang Mar 2019

Building The Outer Membrane Protein G (Ompg) Nanopore Library: From The Discrimination Of Biotin-Binding Proteins In Serum To Resolving Human Carbonic Anhydrase From Human Red Blood Cells, Bib Yang

Doctoral Dissertations

The use of pore-forming proteins (PFPs) in nanopore sensing has been fruitful largely due to their nanoscale size and the ease with which protein nanopores can be manipulated and consistently reproduced at a large scale. Nanopore sensing relies heavily on a steady ionic current afforded by rigid nanopores, as the change in current is indicative of analyte detection, revealing characteristics of the analyte such as its relative size, concentration, and charge, as well as the nanopore:analyte interaction. Rigid PFPs have been used in applications such as DNA sequencing, kinetic studies, analyte discrimination, and protein conformation dynamics at the single-molecule level. …


Development Of An Astrocyte/Glioma Co-Culture System For Measuring Cellular Dynamics, Urna Kansakar Feb 2019

Development Of An Astrocyte/Glioma Co-Culture System For Measuring Cellular Dynamics, Urna Kansakar

Doctoral Dissertations

Gliomas are brain tumors that primarily arise from glial cells. Gliomas account for 70% of the brain tumors and they are more prevalent in older adults. About 60% of the people with gliomas experience at least one seizure. Brain tumors can grow and metastasize to neighboring areas, thereby destroying normal brain cells. In a brain tumor microenvironment, both malignant cancer cells and healthy brain cells are present. Studies have shown that astrocytes may have a role in tumor growth in the brain. Monocultures cannot evaluate interactions between two cell types and does not accurately represent in vivo conditions. Thus, a …


Development Of A Counter-Flow Thermal Gradient Microfluidic Device, Shayan Davani Feb 2019

Development Of A Counter-Flow Thermal Gradient Microfluidic Device, Shayan Davani

Doctoral Dissertations

This work presents a novel counter-flow design for thermal stabilization of microfluidic thermal reactors. In these reactors, precise control of temperature of the liquid sample is achieved by moving the liquid sample through the thermal zones established ideally through the conduction in the solid material of the device. The goal here is to establish a linear thermal distribution when there is no flow and to minimize the temperature change at flow condition. External convection as well as internal flowinduced effects influence the prescribed thermal distribution. The counter-flow thermal gradient device developed in this study is capable of both stabilizing the …


Applications Of Machine Learning In Nuclear Imaging And Radiation Detection, Shaikat Mahmood Galib Jan 2019

Applications Of Machine Learning In Nuclear Imaging And Radiation Detection, Shaikat Mahmood Galib

Doctoral Dissertations

"The main focus of this work is to use machine learning and data mining techniques to address some challenging problems that arise from nuclear data. Specifically, two problem areas are discussed: nuclear imaging and radiation detection. The techniques to approach these problems are primarily based on a variant of Artificial Neural Network (ANN) called Convolutional Neural Network (CNN), which is one of the most popular forms of 'deep learning' technique.

The first problem is about interpreting and analyzing 3D medical radiation images automatically. A method is developed to identify and quantify deformable image registration (DIR) errors from lung CT scans …


Spatiotemporal Modeling And Model Restructuration Approaches In Studies Of Intracellular Signalling Pathways, Md Shahinuzzaman Jan 2019

Spatiotemporal Modeling And Model Restructuration Approaches In Studies Of Intracellular Signalling Pathways, Md Shahinuzzaman

Doctoral Dissertations

"The main focus of the research is to understand the complex phenomena of cell transduction pathways and cell biology in a single cell. Mathematical modeling and experimental evaluation are widely used approaches for this kind of research. Firstly, A multiscale framework for protein-protein interaction has been established using Brownian dynamics algorithm. Sit specific feature, steric collision, diffusion, co-localization and complex formation with time and space has been included in this spatial modeling framework. By implementation of the time adaptive feature in this framework, the computation time reduces in an order of magnitude compared with traditional modeling framework. This multiscale Brownian …