Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

Biomedical Engineering Undergraduate Honors Theses

Biochemical and Biomolecular Engineering

Articles 1 - 2 of 2

Full-Text Articles in Biomedical Engineering and Bioengineering

Erythrocyte Deformability In Response To Glucose Using Liquid Crystals, Jayden Goff May 2022

Erythrocyte Deformability In Response To Glucose Using Liquid Crystals, Jayden Goff

Biomedical Engineering Undergraduate Honors Theses

The worldwide prevalence of diabetes mellitus is rapidly increasing with about 9.3% of the adult population living with the disease. People with diabetes have trouble regulating their blood glucose levels which typically leads to hyperglycemia. Under normal physiological conditions, erythrocytes can undergo deformations in response to shear stress when passing through capillaries with a smaller diameter. Poorly managed hyperglycemia can lead to the glycosylation of erythrocyte membrane proteins and hemoglobin. This glycosylation leads to increased rigidity of the cells along with decreased deformability in response to mechanical stress; therefore, these cells have a higher susceptibility of getting stuck in the …


Local Delivery Of Ctla-4 Blockade Inhibits Growth Of Pancreatic Tumors, Jack Baltz May 2016

Local Delivery Of Ctla-4 Blockade Inhibits Growth Of Pancreatic Tumors, Jack Baltz

Biomedical Engineering Undergraduate Honors Theses

Immune checkpoint blockade has demonstrated great potential in activating antitumor immunity. Ipilimumab is a monoclonal antibody which targets cytotoxic T-lymphocyte antigen-4. CTLA-4 belongs to the CD28 class of receptors and is found on the surface of CD4+ and CD8+ T cells. CTLA-4 acts to suppress the immune system when bound to CD80 and CD86 receptors on antigen presenting cells. Ipilimumab, or anti-CTLA-4, has shown to be effective in significantly extending the survival of patients with metastatic melanoma. However, systemic delivery of Ipilimumab also induces significant side effects such as: colitis, dermatitis, uveitis, and hypophysitis. In order to minimize …