Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Biomedical Engineering and Bioengineering

Skeletal Muscle Contraction Simulation: A Comparison In Modeling, Jonathan M. Ford Nov 2013

Skeletal Muscle Contraction Simulation: A Comparison In Modeling, Jonathan M. Ford

USF Tampa Graduate Theses and Dissertations

Computer generated three-dimensional (3-D) models are being used at increasing rates in the fields of entertainment, education, research, and engineering. One of the aspects of interest includes the behavior and function of the musculoskeletal system. One such tool used by engineers is the finite element method (FEM) to simulate the physics behind muscle mechanics. There are several ways to represent 3-D muscle geometry, namely a bulk, a central line of action and a spline model. The purpose of this study is to exmine how these three representations affect the overall outcome of muscle movement. This is examined in a series …


A Biocompatible Sic Rf Antenna For In-Vivo Sensing Applications, Shamima Afroz Jan 2013

A Biocompatible Sic Rf Antenna For In-Vivo Sensing Applications, Shamima Afroz

USF Tampa Graduate Theses and Dissertations

A continuous glucose sensor employing radio frequency (RF) signals is presented using the biocompatible material Silicon Carbide (SiC). Unlike biosensors that require direct contact with interstitial fluids to trigger chemical reactions to operate, this biocompatible SiC sensor does not require a direct interface. The sensing mechanism for this SiC sensor is based upon a shift in resonant frequency, as a function of change in glucose levels, which electrically manifests itself as a change in blood permittivity and

conductivity. For in vivo applications the antenna sensor needs to operate inside the body environment, and it has been found that the best …


Vapor-Liquid-Solid(Vls) Grown Silica (Siox) Nanowires As The Interface For Biorecognition Molecules In Biosensors, Eduardo Murphy-Pérez Jan 2013

Vapor-Liquid-Solid(Vls) Grown Silica (Siox) Nanowires As The Interface For Biorecognition Molecules In Biosensors, Eduardo Murphy-Pérez

USF Tampa Graduate Theses and Dissertations

SiOx nanowires grown through the VLS mechanism were electrophoretically deposited on top of Au electrodes. GOx was immobilized using APTES and the EDC-NHS chemistry. Cyclic Voltammetry was used as the method to characterize the electrodes through their processing steps, and CV was also used to detect glucose in a PBS based solution. Ferro-Ferri Cyanide couple was used as the mediator.


Structured Materials For Catalytic And Sensing Applications, Selma Hokenek Jan 2013

Structured Materials For Catalytic And Sensing Applications, Selma Hokenek

USF Tampa Graduate Theses and Dissertations

The optical and chemical properties of the materials used in catalytic and sensing applications directly determine the characteristics of the resultant catalyst or sensor. It is well known that a catalyst needs to have high activity, selectivity, and stability to be viable in an industrial setting. The hydrogenation activity of palladium catalysts is known to be excellent, but the industrial applications are limited by the cost of obtaining catalyst in amounts large enough to make their use economical. As a result, alloying palladium with a cheaper, more widely available metal while maintaining the high catalytic activity seen in monometallic catalysts …


Myoglobin Detection On Sic: Immunosensor Development For Myocardial Infarction, Alexandra Oliveros Villalba Jan 2013

Myoglobin Detection On Sic: Immunosensor Development For Myocardial Infarction, Alexandra Oliveros Villalba

USF Tampa Graduate Theses and Dissertations

Silicon carbide (SiC) has been around for more than 100 years as an industrial material and has found wide and varied applications because of its unique electrical and thermal properties. In recent years there has been increased attention on SiC as a viable material for biomedical applications. Among these applications are those where SiC is used as a substrate material for biosensors and biotransducers, taking advantage of its surface chemical, tribological and electrical properties.

In this work we have used the proven bio- and hema-compatibility of SiC to develop a viable biorecognition interface using SiC as the substrate material for …


Quantifying The Ergonomic Impact On Healthcare Workers Using A Needle-Free Injector Device, Humberto Jose Olivero Lara Jan 2013

Quantifying The Ergonomic Impact On Healthcare Workers Using A Needle-Free Injector Device, Humberto Jose Olivero Lara

USF Tampa Graduate Theses and Dissertations

Background: Jet injectors are advantageous over needle injectors by eliminating sharps hazards. The Government Accountability Office estimates 29% preventable sharp injuries with an estimated direct cost of more than $500 million out of the CDC's reported incidence of 385,000 needle stick injuries per year among US hospital healthcare workers. Yet the forces required to set and trigger devices using spring mechanisms for medication delivery have not been explored. This laboratory experiment measured forces exerted by healthcare workers (HCWs) using a particular jet injector approved by FDA in 2011.

Objectives: In order to quantify the ergonomic impact on HCWs using a …


An Acoustic-Based Microfluidic Platform For Active Separation And Mixing, Myeong Chan Jo Jan 2013

An Acoustic-Based Microfluidic Platform For Active Separation And Mixing, Myeong Chan Jo

USF Tampa Graduate Theses and Dissertations

Particle separation is of great interest to many biological and biomedical applications. Flow-based methods have been used to sort particles and cells. However, the main challenge with flow based particle separation systems is the need for a sheath flow for successful operation. Existence of the sheath liquid dilutes the analyte, necessitates precise flow control between sample and sheath flow, requires a complicated design to create sheath flow and separation efficiency depends on the sheath liquid composition. In addition, current gold standard active separation techniques are only capable of separation based on particle size; hence, separation cannot be achieved for same-size …


Fabricating And Characterizing Physical Properties Of Electrospun Polypeptide-Based Nanofibers, Dhan Bahadur Khadka Jan 2013

Fabricating And Characterizing Physical Properties Of Electrospun Polypeptide-Based Nanofibers, Dhan Bahadur Khadka

USF Tampa Graduate Theses and Dissertations

This dissertation has aimed to fabricate polypeptide based biomaterial and characterize physical properties. Electrospinning is used as a tool for the sample fabrication. Project focused on determining the feasibility of electrospinning of certain synthetic polypeptides and certain elastin-like peptides from aqueous feedstocks and to characterize physical properties of polymer aqueous solution, cast film and spun fibers and fiber mats. The research involves peptide design, polymer electrospinning, fibers crosslinking, determining the extent of crosslinking, fibers protease degradation study, fibers stability and self-organization analysis, structure and composition determination by various spectroscopy and microscopy techniques and characterization of mechanical properties of individual suspended …