Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Biomedical Engineering and Bioengineering

Exploring Ph Gradient Phenomena In Non-Linear Electrokinetic Microfluidic Devices, Azade Tahmasebi Jan 2023

Exploring Ph Gradient Phenomena In Non-Linear Electrokinetic Microfluidic Devices, Azade Tahmasebi

Dissertations, Master's Theses and Master's Reports

Electrokinetic microfluidics is a versatile technology utilized within lab on a chip (LOC) devices for diagnostic and analytical applications; advantages include reduced resource demands, flexibility, and simplicity of use. Dielectrophoresis (DEP) is a precision nonlinear electrokinetic tool utilized within microfluidic microdevices to induce polarization and control bioparticle motions for applications that range from hemoglobin separations to cancer cell isolation and detection. Despite promising results, undesired side phenomena can occur in electrokinetic systems which impede reproducibility and accuracy. These unfavorable phenomena have not been comprehensively explored in the literature. Prior preliminary research suggests the fundamental phenomena originate from microelectrodes utilized in …


Lipemia Levels Analysis From Human Blood Samples, Zainab Ibrahim Alshoug Jan 2020

Lipemia Levels Analysis From Human Blood Samples, Zainab Ibrahim Alshoug

Dissertations, Master's Theses and Master's Reports

Worldwide, an estimated 31% of people who die each year have a cardiovascular disease (CVD), an all-encompassing group of diseases and conditions of the heart or blood vasculature. Access to portable, user-friendly tools to test lipid levels accurately and efficiently, without requiring large volume blood draws, will help improve access to wellness management by reducing costs and facilitating early screening and monitoring of CVD thus improving outcomes. Point of care micro or millifluidic chips to test biofluids that are integrated into detection units are an attractive measurement tool because of their potential for ease of use by patients at home …


Exploring The Role And Impact Of Microscale Phenomena On Electrode, Microdevice, And Cellular Function, Sanaz Habibi Jan 2019

Exploring The Role And Impact Of Microscale Phenomena On Electrode, Microdevice, And Cellular Function, Sanaz Habibi

Dissertations, Master's Theses and Master's Reports

Microfluidic technologies enable the development of portable devices to perform multiple high-resolution unit operations with small sample and reagent volumes, low fabrication cost, facile operation, and quick response times. Microfluidic platforms are expected to effectively interpret both wanted and unwanted phenomena; however, a comprehensive evaluation of the unwanted phenomena has not been appropriately investigated in the literature. This work explored an attenuative evaluation of unwanted phenomena, also called here as secondary phenomena, in a unique approach.

Upon electric field utilization within microfluidic devices, electrode miniaturization improves device sensitivity. However, electrodes in contact with medium solution can yield byproducts that can …


Surface Enabled Lab-On-A-Chip (Loc) Device For Protein Detection And Separation, Zhichao Wang Jan 2017

Surface Enabled Lab-On-A-Chip (Loc) Device For Protein Detection And Separation, Zhichao Wang

Dissertations, Master's Theses and Master's Reports

Sensitive and selective chemical/biological detection/analysis for proteins is essential for applications such as disease diagnosis, species phenotype identification, product quality control, and sample examination. Lab-on-a-chip (LOC) device provides advantages of fast analysis, reduced amount of sample requirements, and low cost, to magnificently facilitate protein detection research. Isoelectric focusing (IEF) is a strong and reliable electrophoretic technique capable of discerning proteins from complex mixtures based on the isoelectric point (pI) differences. It has experienced plenty of fruitful developments during previous decades which has given it the capability of performing with highly robust and reproducible analysis. This progress has made IEF devices …


Utilizing Dielectrophoresis To Determine The Physiological Differences Of Eukaryotic Cells, Tayloria Nicole Gail Adams Jan 2014

Utilizing Dielectrophoresis To Determine The Physiological Differences Of Eukaryotic Cells, Tayloria Nicole Gail Adams

Dissertations, Master's Theses and Master's Reports - Open

Type 1 diabetes affects over 108,000 children, and this number is steadily increasing. Current insulin therapies help manage the disease but are not a cure. Over a child’s lifetime they can develop kidney disease, blindness, cardiovascular disease and many other issues due to the complications of type 1 diabetes. This autoimmune disease destroys beta cells located in the pancreas, which are used to regulate glucose levels in the body. Because there is no cure and many children are affected by the disease there is a need for alternative therapeutic options that can lead to a cure.

Human mesenchymal stem cells …