Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

Clemson University

Atomic Force Microscope

Publication Year
Publication

Articles 1 - 2 of 2

Full-Text Articles in Biomedical Engineering and Bioengineering

The Effects Of Coated Gold Nanorods On Porcine Atrioventricular Valve Tissues Using Atomic Force Microscopy, Heather L'Ecuyer May 2012

The Effects Of Coated Gold Nanorods On Porcine Atrioventricular Valve Tissues Using Atomic Force Microscopy, Heather L'Ecuyer

All Theses

In this Master's thesis we examine the effect of surface modified gold nanorods (AuNRs) coated with polyelectrolyte multilayers (PEMs) on the mechanical properties of porcine mitral valve tissue ex vivo. The presence of healthy mitral valve tissue in the body is important to ensuring unidirectional flow of blood through the systemic circuit. Unfortunately, due to its anatomic complexity and unique mechanical behavior, pathological mitral valve tissue remains difficult to treat with conventional methods. We hope that the knowledge gleaned from these studies could be useful for developing new and novel treatments treating pathological mitral valve mechanical properties.
Specifically, we examine …


Characterization Of Vascular Smooth Muscle Cell Mechanical And Frictional Properties Using Atomic Force Microscopy, Jason Hemmer Dec 2008

Characterization Of Vascular Smooth Muscle Cell Mechanical And Frictional Properties Using Atomic Force Microscopy, Jason Hemmer

All Dissertations

A working hypothesis within the Laboratory of Vascular Research is that mechanical loading on vascular smooth muscle cells (VSMCs), especially due to solid contact from endovascular devices, contributes to the development of restenosis. In order to better understand the role of mechanical loading on VSMCs in vascular disease development, it is imperative to understand the mechanical properties of VSMCs themselves. To measure the viscoelastic and frictional properties of living VSMCs in an in vitro setting, an atomic force microscope (AFM) was utilized, thereby allowing for mechanical testing of living cells in a fluid environment. In the first phase of research, …