Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Biomedical Engineering and Bioengineering

Development Of Quantitative Ultrasound-Mediated Molecular Imaging Of The Tumor Microenvironment, Trevor Mitcham May 2021

Development Of Quantitative Ultrasound-Mediated Molecular Imaging Of The Tumor Microenvironment, Trevor Mitcham

Dissertations & Theses (Open Access)

While conventional diagnostic imaging modalities provide anatomical information to clinicians, these techniques are not sensitive to critical physiological processes. In order to properly classify cancer, it is necessary to investigate noninvasive methods which can provide insight into these processes, allowing clinicians to determine personalized therapeutic options. Therefore, molecular imaging is focused on visualization and characterization of biomarkers within the tumor microenvironment (TME), which can then be combined with the anatomical information provided from diagnostic imaging.

Two such biomarkers of interest are blood oxygen saturation (SO2) and cell receptor expression. SO2 is a measure of the fraction of …


Voxel-Level Absorbed Dose Calculations With A Deterministic Grid-Based Boltzmann Solver For Nuclear Medicine And The Clinical Value Of Voxel-Level Calculations, Justin Mikell Dec 2015

Voxel-Level Absorbed Dose Calculations With A Deterministic Grid-Based Boltzmann Solver For Nuclear Medicine And The Clinical Value Of Voxel-Level Calculations, Justin Mikell

Dissertations & Theses (Open Access)

Voxel-level absorbed dose (VLAD) is rarely calculated for nuclear medicine (NM) procedures involving unsealed sources or 90Y microspheres (YM). The current standard of practice for absorbed dose calculations in NM utilizes MIRD S-values, which 1) assume a uniform distribution in organs, 2) do not use patient specific geometry, and 3) lack a tumor model. VLADs overcome these limitations. One reason VLADs are not routinely performed is the difficulty in obtaining accurate absorbed doses in a clinically acceptable time. The deterministic grid-based Boltzmann solver (GBBS) was recently applied to radiation oncology where it was reported as fast and accurate for both …


Characterization Of Low Density Intracranial Lesions Using Dual-Energy Computed Tomography, Jessica L. Nute May 2015

Characterization Of Low Density Intracranial Lesions Using Dual-Energy Computed Tomography, Jessica L. Nute

Dissertations & Theses (Open Access)

Calcific and hemorrhagic foci of susceptibility are frequently encountered on routine brain MR studies. Both etiologies cause variations in local magnetic field strength, leading to dark regions on the MR images that cannot be classified. Single-energy CT (SECT) can be used to identify lesions with attenuation over 100 HU as calcific, however lesions with lower attenuation cannot be reliably identified. While calcific lesions are unlikely to cause harm, hemorrhagic lesions carry a risk of subsequent intracranial bleeding; as such, identification of hemorrhage is vital in preventing the inappropriate use of anticoagulant medications in patients with hemorrhagic lesions.

Given there currently …


New Tools For Monitoring Gamma Camera Uniformity, Brad K. Lofton Dec 2010

New Tools For Monitoring Gamma Camera Uniformity, Brad K. Lofton

Dissertations & Theses (Open Access)

Detector uniformity is a fundamental performance characteristic of all modern gamma camera systems, and ensuring a stable, uniform detector response is critical for maintaining clinical images that are free of artifact. For these reasons, the assessment of detector uniformity is one of the most common activities associated with a successful clinical quality assurance program in gamma camera imaging. The evaluation of this parameter, however, is often unclear because it is highly dependent upon acquisition conditions, reviewer expertise, and the application of somewhat arbitrary limits that do not characterize the spatial location of the non-uniformities. Furthermore, as the goal of any …