Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

Molecular, Cellular, and Tissue Engineering

2017

Institution
Keyword
Publication

Articles 1 - 22 of 22

Full-Text Articles in Biomedical Engineering and Bioengineering

Syngenic Adipose-Derived Stem/Stromal Cells Delivered In Decellularized Adipose Tissue Scaffolds Enhance In Vivo Tissue Regeneration Through Host Cell Recruitment, Kevin P. Robb Dec 2017

Syngenic Adipose-Derived Stem/Stromal Cells Delivered In Decellularized Adipose Tissue Scaffolds Enhance In Vivo Tissue Regeneration Through Host Cell Recruitment, Kevin P. Robb

Electronic Thesis and Dissertation Repository

Decellularized adipose tissue (DAT) represents a promising adipogenic bioscaffold for applications in soft tissue augmentation or reconstruction. With the goal of investigating the role of syngeneic donor adipose-derived stem/stromal cells (ASCs) and host myeloid cells during in vivo adipose tissue regeneration, transgenic reporter mouse strains were used to track these cell populations within ASC-seeded and unseeded DAT scaffolds. Donor ASCs were obtained from dsRed transgenic mice. These cells were shown to express characteristic cell surface markers, and multilineage differentiation capacity was confirmed. To facilitate cell tracking, DAT scaffolds were subcutaneously implanted into MacGreen mice in which myeloid cells express enhanced …


Design And Synthesis Of Analogs Of Myo-Inositol, Serine, And Cysteine To Enable Chemical Biology Studies, Tanei J. Ricks Dec 2017

Design And Synthesis Of Analogs Of Myo-Inositol, Serine, And Cysteine To Enable Chemical Biology Studies, Tanei J. Ricks

Doctoral Dissertations

Phosphorylated myo-inositol compounds including inositol phosphates (InsPs) as well as the phosphatidylinositol polyphosphate lipids (PIPns) are critical biomolecules that regulate many of the most important biological processes and pathways. They are aberrant in many disease states due to their regulatory function. The same is true of the phospholipid phosphatidylserine (PS) which can serve as a marker to begin apoptosis. However, the full scope of activities of these structures is not clear, particularly since techniques that enable global detection and analysis of the production of these compounds spatially and temporally are lacking. With all of these obstacles in …


Effects Of Uniaxial Cyclic Strain On Endothelial Progenitor Cells, Maria Alejandra Zeballos Castro Dec 2017

Effects Of Uniaxial Cyclic Strain On Endothelial Progenitor Cells, Maria Alejandra Zeballos Castro

Biomedical Engineering Undergraduate Honors Theses

Despite the high prevalence of calcific aortic valve disease (CAVD), the underlying mechanisms of pathogenesis have not been found yet. Therefore, it is extremely important to study CAVD and understand how it develops. For this matter, we decided to study the potential of endothelial progenitor cells (EPCs) for use in tissue-engineered models of heart valves. EPCs were chosen as the cell source of interest for this study due to their high neovascularization potential and use in regenerative medicine and cardiovascular tissue engineering.

In this project, we aimed to engineer the microenvironment of cells that are involved in the formation of …


Tissue-Guided Engineering Of Polyethylene Glycol Hydrogels, Lauren Jansen Nov 2017

Tissue-Guided Engineering Of Polyethylene Glycol Hydrogels, Lauren Jansen

Doctoral Dissertations

Polyethylene glycol (PEG) hydrogels are tunable cell culture platforms that recapitulate tissue geometry, water content, and bulk modulus. Despite these benefits, PEG hydrogels elicit an acute immune response, limiting their use in regenerative medicine, and they critically underrepresent the cell-instructive proteins found in the extracellular matrix (ECM). Here, I developed a new class of tissue-specific PEG-based materials and provided biocompatible strategies to improve the user handling and cell viability post-encapsulation when using these hydrogels. I also demonstrated that decreasing the protein fouling to PEG does not decrease the foreign body response to implanted hydrogels, a common misconception in the field. …


Elucidating The Mechanical, Structural, Functional, And Molecular Mechanisms Involved In Irreversible Vascular Changes In Aortic Coarctation, Brandon Wegter Oct 2017

Elucidating The Mechanical, Structural, Functional, And Molecular Mechanisms Involved In Irreversible Vascular Changes In Aortic Coarctation, Brandon Wegter

Master's Theses (2009 -)

Coarctation of the aorta (CoA) is a constriction of the thoracic aorta and is one of the most common congenital cardiovascular defects. Treatment by surgical correction has saved the lives of thousands of children, but many still have a reduced lifespan due to hypertension. Previous results using our novel rabbit model showed that the current treatment guideline of a 20 mmHg blood pressure gradient (BPG) induces irreversible vascular changes, which persisted despite correction. Preliminary data of the downregulation of natriuretic peptide receptor C (NPR-C) in proximal aortic tissue of human patients with CoA serves as the possible underlying mechanism for …


Influence Of Fibroblasts On Functional Arteriogenesis In A Murine Chronic Hindlimb Ischemia Model, Ashli A. Santos Sep 2017

Influence Of Fibroblasts On Functional Arteriogenesis In A Murine Chronic Hindlimb Ischemia Model, Ashli A. Santos

Biomedical Engineering

Peripheral arterial occlusive disease (PAOD) occurs when there is a narrowing or blockage – usually a buildup of plaque - within the arteries that reduces blood flow to tissues which can chronic ischemia. As with most diseases, early detection and proactive treatment are important to maximize prognosis. Exercise effectively treats PAOD, but due to ischemic pain in the limbs, or intermittent claudication (IC), exercise can become painful and difficult. Due to the buildup of plaque, occlusions create an ischemic environment that changes the pressure distribution in collateral networks and increases the shear stress in transverse collaterals. Those two responses signal …


Intravenous Administration Of Iron Oxide Nanoparticles In The Chicken Model, Huong Thi Ngoc Le Aug 2017

Intravenous Administration Of Iron Oxide Nanoparticles In The Chicken Model, Huong Thi Ngoc Le

Graduate Theses and Dissertations

To be used in health care, the safety and effectiveness of nanoparticles needs to be tested in a living organism. The objective of this project was to develop the chicken as a convenient animal model to examine tissue targeting of intravenously (i.v.)-injected iron oxide (IO) nanoparticles. In Experiment 1, different doses of IO-COOH were i.v. injected into chickens; blood was collected at 0, 5, 15, 30, and 60 minutes post-injection; liver, spleen, lung, and kidney were collected after the last blood collection. For Experiment 2, IO-COOH and IO-PEG were i.v. injected into chickens; blood and the organs were collected at …


Isolation And Culture Of Myofiber-Derived Cells From The Extensor Digitorum Longus Muscle, Ethan M. Tietze Jun 2017

Isolation And Culture Of Myofiber-Derived Cells From The Extensor Digitorum Longus Muscle, Ethan M. Tietze

Biomedical Engineering

Peripheral arterial occlusive disease (PAOD) involves distal artery occlusion by atherosclerotic plaques, which restricts blood flow and leads to ischemia in downstream tissues. Increased blood flow through preexisting collateral vessels leads to increased shear stress that triggers an outward remodeling of the vessel called arteriogenesis. In some cases this natural compensatory mechanism is able to sufficiently restore blood flow following arterial occlusion. However, for many individuals this process is insufficient to relieve peripheral ischemia, and patients experience intermittent claudication, or limb pain with locomotion or exercise. Without treatment, reduced blood flow can lead to tissue necrosis and potentially amputation. The …


Development And Characterization Of Tissue Engineered Blood Vessel Mimics Under "Diabetic" Conditions, Shelby Gabrielle Kunz Jun 2017

Development And Characterization Of Tissue Engineered Blood Vessel Mimics Under "Diabetic" Conditions, Shelby Gabrielle Kunz

Master's Theses

The development of tissue engineered blood vessel mimics for the testing of intravascular devices in vitro has been established in the Cal Poly tissue engineering lab. Due to the prevalence of cardiovascular disease in diabetic patients and minimal accessible studies regarding the interactions between diabetes and intravascular devices used to treat vascular disease, there is a need for the development of diabetic models that more accurately represents diabetic processes occurring in the blood vessels, primarily endothelial dysfunction. This thesis aimed to create a diabetic blood vessel mimic by implementing a high glucose environment for culturing human endothelial cells from healthy …


The Impact Of The Mitochondrial Metabolism Of Induced Pluripotent Stem Cells Upon Differentiation, Stefanie T. Shahan May 2017

The Impact Of The Mitochondrial Metabolism Of Induced Pluripotent Stem Cells Upon Differentiation, Stefanie T. Shahan

McKelvey School of Engineering Theses & Dissertations

Induced pluripotent stem cells (iPSCs) can be differentiated into any cell type found in the body. The derivation of a stem cell derived β cell (SC-β) capable of responding to glucose by secreting insulin was hugely significant for diabetes research and opened up the possibility of cell replacement therapy to combat this widespread disease (Pagliuca et al. 2014). The optimization of differentiation procedures such as this could improve yield, function, cost, and efficiency of a stem cell-derived product. Current approaches to improve differentiation are primarily focused on signal transduction pathways, while the metabolic state of the cells has received little …


Development And Evaluation Of A Biocompatible Electroactive Sensor For Continuous Blood Pressure Measurement., Scott D. Cambron May 2017

Development And Evaluation Of A Biocompatible Electroactive Sensor For Continuous Blood Pressure Measurement., Scott D. Cambron

Electronic Theses and Dissertations

Piezo-active composites have been implemented for sensing and transduction for decades. The 0-3 ceramic/polymer composite is one of the most common composite types used for sensing applications, owing to their tailorable properties of the two-phase composition, consisting of a three-dimensionally connected polymer/rubber matrix (inactive phase) with a dispersion of isolated piezo-ceramic particles (active phase). This thesis describes a method to develop novel biocompatible perivascular band comprised of a two-phase piezo-active composite to be fabricated using simple manufacturing processes. Biomaterials such as tissue scaffolds comprised of silk fibroin (SF) and chitosan (CS), and biocompatible soft rubbers will be implemented as the …


Detection Of Leukocytes Stained With Acridine Orange Using Unique Spectral Features Acquired From An Image-Based Spectrometer, Courtney J. Hunter May 2017

Detection Of Leukocytes Stained With Acridine Orange Using Unique Spectral Features Acquired From An Image-Based Spectrometer, Courtney J. Hunter

Biomedical Engineering Undergraduate Honors Theses

A leukocyte differential count can be used to diagnosis a myriad blood disorders, such as infections, allergies, and efficacy of disease treatments. In recent years, attention has been focused on developing point-of-care (POC) systems to provide this test in global health settings. Acridine orange (AO) is an amphipathic, vital dye that intercalates leukocyte nucleic acids and acidic vesicles. It has been utilized by POC systems to identify the three main leukocyte subtypes: granulocytes, monocytes, and lymphocytes. Subtypes of leukocytes can be characterized using a fluorescence microscope, where the AO has a 450 nm excitation wavelength and has two peak emission …


Age's Effect On Regenerative Capabilities Of Myocytes Through Satellite Cell Analysis, Karam S. Sra May 2017

Age's Effect On Regenerative Capabilities Of Myocytes Through Satellite Cell Analysis, Karam S. Sra

Biomedical Engineering Undergraduate Honors Theses

The objective of this study was to investigate potential effects aging had on muscle fiber area and satellite cell count in myocytes. This research could help elucidate the detrimental effect age has on regenerative capabilities whether in terms of satellite cell function or satellite cell number. Satellite cells are primarily responsible for generating new muscle tissue after being activated through mechanotransduction of injury. This study utilized immunofluorescence to examine the presence of the PAX7 gene expression, a unique marker of satellite cells, within a 12 month and 18 month old population of mice. The PAX7 marker was co-stained with DAPI …


Characterization Of The Response Of Trpv4 To Chemical Stimulation, Jacob V. Schluns May 2017

Characterization Of The Response Of Trpv4 To Chemical Stimulation, Jacob V. Schluns

Biomedical Engineering Undergraduate Honors Theses

Traumatic Brain Injury (TBI) is a source of acute and chronic health issues for many patients. One of the components of the brain’s response to injury is astrogliosis, in which astrocytes that normally function to repair the brain instead form scar tissue that halts repair processes. Transient Receptor Potential Vanilloid Type 4 (TRPV4) is a trans-membrane calcium channel involved in astrogliosis. Through Fura-2AM based calcium imaging, the base activity of this channel in mouse astrocyte cells was recorded. The cells were then subjected to TRPV4 agonist and antagonist stimulation and their subsequent activity levels were recorded. The data showed that …


Role Of Trpv4 In Astrocyte Extracellular Matrix Production, Abby Terlouw May 2017

Role Of Trpv4 In Astrocyte Extracellular Matrix Production, Abby Terlouw

Biomedical Engineering Undergraduate Honors Theses

Traumatic Brain Injury (TBI) is an alteration of brain pathology following damage of the central nervous system (CNS) by an external force. In the CNS, glial scar formation often occurs following TBI, and astrocytes are widely believed to contribute to this scar formation. While the role of astrocytes in extracellular matrix (ECM) production is known, the exact mechanism(s) for this event remain unclear. One possible method is the activation of transient receptor potential vanilloid 4 (TRPV4). TRPV4 is a channel protein found in the astrocyte membrane which has been shown to generate intracellular calcium ions following mechanical stimulation. Previous research …


Assessing Dprestin & Nadc1 (Indy) Interaction On Calcium Oxalate Crystal Formation In A Drosophila Model Of Kidney Stones, Jessica Lin Jan 2017

Assessing Dprestin & Nadc1 (Indy) Interaction On Calcium Oxalate Crystal Formation In A Drosophila Model Of Kidney Stones, Jessica Lin

Undergraduate Research Symposium Posters

Calcium oxalate (CaOx) accounts for >70%of kidney stones, yet why CaOx stones form is poorly understood. While several factors contribute to the stone aggregation and growth, elucidating the roles of oxalate transporters can help demystify this phenomenon. Using a Drosophila model to study the formation and inhibition of CaOx crystals in the fly Malpighian tubule (MT), oxalate transport via dPrestin—the fly Slc26a6 Cl-/Ox2- exchanger was studied using both electrophysiology and MT dissection with CaOx birefringence assays. Here, the fly model suffices as it recapitulates renal oxalate excretion. Additionally, the mammalian dicarboxylate transporter NaDC1 (Indy in Drosophila) …


Quantifying The Effects Of Hydrostatic Pressure On Fibroblast Growth Factor-2 Binding By The Human Endothelium, Taylor R. Mckenty Jan 2017

Quantifying The Effects Of Hydrostatic Pressure On Fibroblast Growth Factor-2 Binding By The Human Endothelium, Taylor R. Mckenty

Theses and Dissertations--Biomedical Engineering

Fluid pressures regulate endothelial cell (EC) tubulogenic activity involving fibroblast growth factor 2 (FGF-2) and its receptor, FGF receptor 2 (FGFR2). Our lab has recently shown that sustained 20 mmHg hydrostatic pressure (HP) upregulates EC sprout formation in a FGF2-dependent fashion. This upregulation of sprout formation may be due to enhanced FGF-2 / FGFR2 interactions in the presence of 20 mmHg HP. We hypothesize that exposure of ECs to 20 mmHg sustained HP enhances FGF-2 binding kinetics. We used a custom hydrostatic pressure system, immunofluorescence, and FACS to quantify FGF-2 binding by ECs in the absence or presence of a …


Modulating The Innate Immune Response To Electrospun Scaffolds And Polymer Degradative Byproducts, Daniel Abebayehu Jan 2017

Modulating The Innate Immune Response To Electrospun Scaffolds And Polymer Degradative Byproducts, Daniel Abebayehu

Theses and Dissertations

Implanted biomaterials often induce inflammation that frequently leads to the foreign body response, fibrosis, and the failure of the implant. Thus, it is important to evaluate how cells interact with materials to promote a more regenerative response. It is critical to determine how to modulate the response of tissue resident innate immune cells, as they are among the first cells to interact with implanted materials. Among tissue resident innate immune cells are mast cells, which are inflammatory sentinels that degranulate and orchestrate the fate of other cell populations, such as monocytes/macrophages and lymphocytes. Mast cells have also been reported to …


A 3d Biomimetic Scaffold Using Electrospinning For Tissue Engineering Applications, Samerender Nagam Hanumantharao Jan 2017

A 3d Biomimetic Scaffold Using Electrospinning For Tissue Engineering Applications, Samerender Nagam Hanumantharao

Dissertations, Master's Theses and Master's Reports

Electrospinning holds great promise for designing functional 3D biomimetic scaffolds for tissue engineering applications. The technique allows for the reproducible fabrication of 3D scaffolds with control over the porosity and thickness. In this work, a novel method for the synthesis of a 3D electroactive scaffold using electrospinning from polycaprolactone (PCL), Polyvinylidene Fluoride (PVDF) and Polyaniline (PANI) is reported. Additional scaffolds involving different morphologies of PCL, PCL-PVDF and PCL-PANI-PVDF were also fabricated and evaluated. The scaffolds were characterized using electron microscopy to visualize the morphologies. Infrared spectroscopy was used to confirm the presence of polymers and their respective phases in the …


Developing Afm Techniques For Testing Peg Hydrogels, Hannah L. Cebull, Jessica Stukel, Rebecca Willits Jan 2017

Developing Afm Techniques For Testing Peg Hydrogels, Hannah L. Cebull, Jessica Stukel, Rebecca Willits

Williams Honors College, Honors Research Projects

Many instruments are used to find elastic properties of biological samples using methods such as tensile and bending tests, but using the atomic force microscope (AFM) is considered a non-destructive method because it can provide repeated local stiffness information without damaging the sample. It additionally allows the sample to be tested in an aqueous environment, which is optimal for soft materials such as hydrogels. The nanoindentation is performed via cantilever, measuring the deflection of the cantilever during the contact of the sample using a laser. Compared to hard samples, testing soft materials can present more challenges when working with the …


Development And Validation Of A Novel Resonant Energy Transfer (Fret) Biosensor To Measure Tensile Forces At The Linc Complex In Live Cells, Paul Arsenovic Jan 2017

Development And Validation Of A Novel Resonant Energy Transfer (Fret) Biosensor To Measure Tensile Forces At The Linc Complex In Live Cells, Paul Arsenovic

Theses and Dissertations

There is a large body of evidence supporting the theory that cell physiology largely depends on the mechanical properties of its surroundings or micro-environment. More recently studies have shown that changes to intra-cellular mechanical properties can also have a meaningful impact on cell function and in some cases lead to the progression of ailments or disease. For example, small changes to the protein sequence of a structural nuclear envelope protein called lamin-A is known to cause a variety of neurological and musculoskeletal diseases referred to as laminopathies. Currently, there is little incite into how these mutations lead to disease progression …


Development Of An Electrospun And 3d Printed Cellular Delivery Device For Dermal Wound Healing, Ryan M. Clohessy Jan 2017

Development Of An Electrospun And 3d Printed Cellular Delivery Device For Dermal Wound Healing, Ryan M. Clohessy

Theses and Dissertations

The goal of this research was to develop a system of individualized medicine that could be applied to dermal wounds serving as a wound dressing and synthetic extracellular matrix while delivering stem cells to the wound bed. First, fabrication parameters for electrospinning polymer fibers were determined. This involved evaluating fiber morphology with respect to polymer selection and solution concentration. Next, construct fabrication was examined to produce an integrated void space, or cargo area, suitable to maintain stem cells. In vitro studies to ensure stem cell viability and phenotype were conducted, and results supported the notion that cells could be administered …