Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Biomedical Engineering and Bioengineering

Selection Methods For Genetically-Modified T Cells: In Support Of Translational Therapy, David Rushworth May 2015

Selection Methods For Genetically-Modified T Cells: In Support Of Translational Therapy, David Rushworth

UT GSBS Dissertations and Theses (Open Access)

T cells are blood cells which organize the immune system of the host. These cells are necessary for the host to respond appropriately to threats from foreign organisms and cancerous growth. However, in the case of certain infections and cancer, T cells are unable to respond appropriately to a threat and establish immunity. This leads to disease when the infection or cancer is not sufficiently eliminated. On the other hand, T cells can lack tolerance for healthy tissue and perceive healthy tissue as infected. The ensuing over-reactive immune response also leads to disease. A delicate balance must exist between immunity ...


Delayed Thrombus Resolution And Fibroproliferative Vascular Wound Healing From Deficiency Of Type Iii Collagen: A Paradoxical Mechanism For Tissue Fragility, Amy J. Reid May 2013

Delayed Thrombus Resolution And Fibroproliferative Vascular Wound Healing From Deficiency Of Type Iii Collagen: A Paradoxical Mechanism For Tissue Fragility, Amy J. Reid

UT GSBS Dissertations and Theses (Open Access)

Vascular Ehlers-Danlos syndrome is a heritable disease of connective tissue caused by mutations in COL3A1, conferring a tissue deficiency of type III collagen. Cutaneous wounds heal poorly in these patients, and they are susceptible to spontaneous and catastrophic rupture of expansible hollow organs like the gut, uterus, and medium-sized to large arteries, which leads to premature death. Although the predisposition for organ rupture is often attributed to inherent tissue fragility, investigation of arteries from a haploinsufficient Col3a1 mouse model (Col3a1+/-) demonstrates that mutant arteries withstand even supraphysiologic pressures comparably to wild-type vessels. We hypothesize that injury that elicits occlusive thrombi ...