Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Biomedical Engineering and Bioengineering

Hybrid Electro-Plasmonic Stimulation Of Primary Neurons, Ratka Damnjanovic Apr 2020

Hybrid Electro-Plasmonic Stimulation Of Primary Neurons, Ratka Damnjanovic

USF Tampa Graduate Theses and Dissertations

Biomedical prosthetics utilizing electrical stimulation have limited, effective spatial resolution due to spread of electrical currents to surrounding tissue, causing nonselective stimulation. So, precise spatial resolution is not possible for traditional neural prosthetic devices, such as cochlear implants. More recently, alternative methods utilize optical stimulation, mainly infrared, sometimes paired with nanotechnology for stimulating action potentials, which has its own drawbacks, as it may heat surrounding tissue. Recently, we employed plasmonic stimulation methods utilizing gold nanoparticle-coated nanoelectrodes to convert visible light pulses into localized surface plasmon resonance transduction for stimulation of electrically excitable cells, which had limited success. Here, we report …


Demonstration Of Monolithic-Silicon Carbide (Sic) Neural Devices, Evans K. Bernardin Nov 2018

Demonstration Of Monolithic-Silicon Carbide (Sic) Neural Devices, Evans K. Bernardin

USF Tampa Graduate Theses and Dissertations

Brain Machine Interfaces (BMI) provide a communication pathway between the electrical conducting units of the brain (neurons) and external devices. BMI technology may provide improved neurological and physiological functions to patients suffering from disabilities due to damaged nervous systems. Unfortunately, microelectrodes used in Intracortical Neural Interfaces (INI), a subset of the BMI device family, have yet to demonstrate long-term in vivo performance due to material, mechanical and electrical failures. Many state-of-the-art INI devices are constructed using stacks of multiple materials, such as silicon (Si), titanium (Ti), platinum (Pt), parylene C, and polyimide. Not only must each material tolerate the biological …


Neural Mechanisms Of Transcranial Magnetic Stimulation In The Treatment Of Tinnitus, Andrea S. Lowe Apr 2018

Neural Mechanisms Of Transcranial Magnetic Stimulation In The Treatment Of Tinnitus, Andrea S. Lowe

USF Tampa Graduate Theses and Dissertations

Millions of people suffer from tinnitus, a disorder for which there is currently no effective treatment or cure. My dissertation work provides insight into the neural correlates of this pervasive hearing disorder and examines how a newly emerging therapy, transcranial magnetic stimulation (TMS), affects the central auditory system in the generation of the tinnitus percept. This work has a multifold focus of: i) developing and modeling the function of a miniature magnetic coil that can be used for TMS in rodents, ii) establishing a reliable mouse model of tinnitus that can be used for assessing TMS treatment-induced changes, iii) measuring …


Force Compensation And Recreation Accuracy In Humans, Benjamin Rigsby Jun 2017

Force Compensation And Recreation Accuracy In Humans, Benjamin Rigsby

USF Tampa Graduate Theses and Dissertations

As industry becomes increasingly reliant on robotic assistance and human-computer interfaces, the demand to understand the human sensorimotor system’s characteristics intensifies. Although this field of research has been going on for over a century, new technologies push the limits of the human motor system and our knowledge of it. With new technologies come new abilities, and, in the area of medical care and rehabilitation, the need to expand our knowledge of the sensorimotor system comes from both the patient and physician.

Two studies relating to human force interaction are presented in this thesis. The first study

focuses on humans’ ability …


Neuropeptide Modulation Of The Large Conductance Potassium (Bk) Channel In The Auditory System: Therapeutic Implications For Age-Related Hearing Loss, Ellliott James Brecht Apr 2017

Neuropeptide Modulation Of The Large Conductance Potassium (Bk) Channel In The Auditory System: Therapeutic Implications For Age-Related Hearing Loss, Ellliott James Brecht

USF Tampa Graduate Theses and Dissertations

The auditory temporal processing deficits associated with age-dependent hearing decline have been increasingly attributed to issues beyond peripheral hearing loss. Age-related hearing loss (ARHL), also known as presbycusis, is linked with changes in the expression of both excitatory and inhibitory neurotransmitters in the central auditory system. There are also age-related changes in the expression and function of the ion channels which mediate action potential firing. The slow, Ca2+ activated, K+ channels of the BK-type are essential in controlling both neurotransmitter release and neural communication via alteration of action potential durations, firing frequency, and neural adaptation. There are many …


Intraocular Pressure Sensing And Control For Glaucoma Research, Simon Antonio Bello Nov 2016

Intraocular Pressure Sensing And Control For Glaucoma Research, Simon Antonio Bello

USF Tampa Graduate Theses and Dissertations

Animal models of ocular hypertension are important for glaucoma research but come with experimental costs. Available methods of intraocular pressure (IOP) elevation are not always successful, the amplitude and time course of IOP changes are unpredictable and irreversible, and IOP measurement by tonometry is laborious. This dissertation focuses on the development and implementation of two novel systems for monitoring and controlling IOP without these limitations. The first device consists of a cannula implanted in the anterior chamber of the eye, a pressure sensor that continually measures IOP, and a bidirectional pump driven by control circuitry that can infuse or withdraw …


Modulation Of Whole Cell Currents In Human Neuroblastoma Cells Via The Hormone Aldosterone: An In Vitro Study, Harish Kumar Chittam Mar 2016

Modulation Of Whole Cell Currents In Human Neuroblastoma Cells Via The Hormone Aldosterone: An In Vitro Study, Harish Kumar Chittam

USF Tampa Graduate Theses and Dissertations

Ion channels play a critical role in maintaining homeostasis by moving various ions in and out of cells. The Na+-K+-2Cl- or NKCC1 ion channel is involved in the regulation of Na+, K+, and Cl- across cell membranes, and plays a key role in many forms of cellular physiology. In the cochlea, NKCC1 is involved in endolymph production and maintenance of the endocochlear potential. Our hypothesis is that blocking NKCC1 channels should directly impact auditory sensitivity causing hearing loss. Our lab has also shown that the hormone aldosterone (ALD) can upregulate …


Development Of A Bi-Directional Electronics Platform For Advanced Neural Applications, Luca Abbati Jan 2012

Development Of A Bi-Directional Electronics Platform For Advanced Neural Applications, Luca Abbati

USF Tampa Graduate Theses and Dissertations

This work presents a high-voltage, high-precision bi-directional multi-channel system capable of stimulating neural activity through bi-phasic pulses of amplitude up to ∓50 V while recording very low-voltage responses as low as tens of microvolts. Most of the systems reported from the scientific community possess at least one of the following common limitations: low stimulation voltages, low gain capabilities, or insufficient bandwidth to acquire a wide range of different neural activities.

While systems can be found that present remarkable capabilities in one or more specific areas, a versatile system that performs over all these aspects is missing. Moreover, as many novel …