Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Biomedical Engineering and Bioengineering

Structure-Property Relationships Of Polymer Films And Hydrogels To Control Bacterial Adhesion, Kristopher W. Kolewe Jan 2018

Structure-Property Relationships Of Polymer Films And Hydrogels To Control Bacterial Adhesion, Kristopher W. Kolewe

Doctoral Dissertations

The emergence and spread of antibiotic resistance across microbial species necessitates the need for alternative approaches to mitigate the risk of infection without relying on commercial antibiotics. Biofilm-related infections are a class of notoriously difficult to treat healthcare-associated infections that frequently develop on the surface of implanted medical devices. As biofilm formation is a surface-associated phenomenon, understanding how the intrinsic properties of materials affect bacterial adhesion enables the development of structure-property relationships that can guide the future design of infection-resistant materials. Despite lacking visual, auditory, and olfactory perception, bacteria still manage to sense and attach to surfaces. Previously, it has ...


Exploring New Therapeutic Strategies For Osteoarthritis: From Genetic Manipulation Of Skeletal Tissues To Chemically-Modified Synthetic Hydrogels, Henry Huang Mar 2017

Exploring New Therapeutic Strategies For Osteoarthritis: From Genetic Manipulation Of Skeletal Tissues To Chemically-Modified Synthetic Hydrogels, Henry Huang

GSBS Dissertations and Theses

Osteoarthritis (OA), a degenerative disease of articular joints, is the leading cause of chronic disability in the US and affects more than a third of adults over 65 years old. Due to the obesity epidemic and an aging population, the prevalence of OA is expected to rise in both young and old adults. There are no disease modifying OA drugs. Therefore, providing any treatment options that delay the onset or progression of OA is highly desirable. The scope of this dissertation examines two different strategies to promote translational therapies for OA. The first approach investigated whether Smad ubiquitin regulatory factor ...


Epithelial-Mesenchymal Crosstalk Influences Cancer-Related Cell Behavior: A 3d Lung Alveolus-Fibroblast Co-Culture System, Jessica Kole Hall Jan 2017

Epithelial-Mesenchymal Crosstalk Influences Cancer-Related Cell Behavior: A 3d Lung Alveolus-Fibroblast Co-Culture System, Jessica Kole Hall

Undergraduate Honors Theses

Lung cancer is a devastating disease that kills more individuals in the United States than any other cancer. The tumor microenvironment is increasingly recognized as playing a major role in the progression of cancer. Thus, studying the interactions among lung cancer cells, non-malignant cells and the surrounding matrix is critical for understanding and treating lung cancer. Three-dimensional in vitro co-culture systems allow for tissue-relevant platforms that better recapitulate the native cell environment. In this work, we employed a cyst templating technique to culture alveolar epithelial cells on photodegradable microspheres and subsequently encapsulated the cell-covered spheres within poly(ethylene glycol) (PEG ...


Bioengineered Platforms To Study Carcinoma Cell Response To Drug Treatment, Thuy V. Nguyen Jan 2016

Bioengineered Platforms To Study Carcinoma Cell Response To Drug Treatment, Thuy V. Nguyen

Doctoral Dissertations

The tumor extracellular matrix (ECM) plays an important role in facilitating tumor growth and mediating tumor cells' resistance to drugs. However, during drug development, potential chemotherapeutics are screened in plastic plates, which lack relevant ECM physicochemical cues. In order to improve drug development process, this dissertation includes the development of relevant 2D and 3D biomaterial systems that can be used to study carcinoma cell response to drug treatment.

A novel poly(ethylene glycol)-phosphorylcholine (PEG-PC) high-throughput biomaterial platform was developed to study how the ECM mechanochemical properties affect cancer cells' response to drug. The PEG-PC biomaterial is optically transparent, has ...


Mimicking The Arterial Microenvironment With Peg-Pc To Investigate The Roles Of Physicochemical Stimuli In Smc Phenotype And Behavior, William G. Herrick Jan 2015

Mimicking The Arterial Microenvironment With Peg-Pc To Investigate The Roles Of Physicochemical Stimuli In Smc Phenotype And Behavior, William G. Herrick

Doctoral Dissertations

The goal of this dissertation was to parse the roles of physical, mechanical and chemical cues in the phenotype plasticity of smooth muscle cells (SMCs) in atherosclerosis. We first developed and characterized a novel synthetic hydrogel with desirable traits for studying mechanotransduction in vitro. This hydrogel, PEG-PC, is a co-polymer of poly(ethylene glycol) and phosphorylcholine with an incredible range of Young’s moduli (~1 kPa - 9 MPa) that enables reproduction of nearly any tissue stiffness, exceptional optical and anti-fouling properties, and support for covalent attachment of extracellular matrix (ECM) proteins. To our knowledge, this combination of mechanical range, low ...


Biomimetic Synthetic Tissue Scaffolds For Bone Regeneration: A Dissertation, Tera M. Filion Potts Jul 2011

Biomimetic Synthetic Tissue Scaffolds For Bone Regeneration: A Dissertation, Tera M. Filion Potts

GSBS Dissertations and Theses

Injury to bone is one of the most prevalent and costly medical conditions. Clinical treatment of volumetric bone loss or hard-to-heal bony lesions often requires the use of proper bone grafting materials, with or without adjuvant anabolic therapeutics. Despite significant problems associated with autografting (donor site morbidity, limited supplies) and allografting (disease transmissions, high graft failure rates) procedures, synthetic bone grafts remain the least utilized clinically. Existing synthetic orthopaedic biomaterials rarely possess a combination of bone-like structural and biochemical properties required for robust osteointegration, scalable and user-friendly characteristics indispensable for successful clinical translations. This thesis tests the hypothesis that by ...