Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Biomedical Engineering and Bioengineering

Biomechanics Of Concussion: The Importance Of Neck Tension, Ron Jadischke Jan 2017

Biomechanics Of Concussion: The Importance Of Neck Tension, Ron Jadischke

Wayne State University Dissertations

Linear and angular velocity and acceleration of the head are typically correlated to concussion. Despite improvements in helmet performance to reduce accelerations, a corresponding reduction in the incidence of concussion has not occurred (National Football League [NFL] 1996 – present).

There is compelling research that forces on and deformation to the brain stem are related to concussion. The brain stem is the center of control for respiration, blood pressure and heart rate and is the root of most cranial nerves. Injury to the brain stem is consistent with most symptoms of concussion reported in the National Football League and the National ...


Development Of A Finite Element Pelvis And Lower Extremity Model With Growth Plates For Pediatric Pedestrian Protection, Ming Shen Jan 2017

Development Of A Finite Element Pelvis And Lower Extremity Model With Growth Plates For Pediatric Pedestrian Protection, Ming Shen

Wayne State University Dissertations

Finite element (FE) model is a useful tool frequently used for investigating the injury mechanisms and designing protection countermeasures. At present, no 10 years old (YO) pedestrian FE model has been developed from appropriate anthropometries and validated against limitedly available impact response data. A 10 YO child FE pelvis and lower extremities (PLEX) model was established to fill the gap of lacking such models in this age group. The baseline model was validated against available pediatric postmortem human subjects (PMHS) test data and additional scaled adult data, then the PLEX model was integrated to build a whole-body FE model representing ...


Biomaterials Approaches For Utilizing The Regenerative Potential Of The Peripheral Nerve Injury Microenvironment, Melissa Renee Wrobel Jan 2017

Biomaterials Approaches For Utilizing The Regenerative Potential Of The Peripheral Nerve Injury Microenvironment, Melissa Renee Wrobel

Wayne State University Dissertations

Clinically available treatments are insufficient to achieve full functional recovery in large (>3cm) peripheral nerve injuries (PNI). The objectives in this thesis were 1) to study often overlooked elements of intrinsic PNI repair including release of inhibitory CSPGs and post-injury responses of inflammatory macrophages and dedifferentiated Schwann cells; 2) to create biomaterial scaf-folds featuring topographical and adhesive cues to enhance neurite outgrowth; and 3) to test the ability of those cues to direct macrophages and Schwann cells towards a pro-regenerative phe-notype. It is hypothesized that recapitulating the positive and negative cues of the PNI microenvi-ronment can better improve regeneration. The ...


Pet Imaging Of Early Therapeutic Response In Solid Tumors, Stephanie J. Blocker Jan 2017

Pet Imaging Of Early Therapeutic Response In Solid Tumors, Stephanie J. Blocker

Wayne State University Dissertations

An important pillar of precision medicine for oncology is the ability to identify patients who respond to treatment early into their therapy. Positron emission tomography (PET) allows physicians and researchers to measure changes in tumor behavior prior to noticeable differences in morphology.

Objective: Determine the utility of multiple tracers for PET in assessing early changes in tumor activity that result from treatment.

Methods: Two tracers for PET were studied. 64Cu-labeled liposomes were used to assess changes in liposome delivery two solid colon tumors early into treatment with bevacizumab (Bev). 18F-FMAU thymidine analog (1-(2'-deoxy-2'-fluoro-beta-D-arabinofuranosyl)thymine), was utilized to ...


An Investigation Of The Relationship Between Axonal Injury, Biomarker Expression And Mechanical Response In A Rodent Head Impact Acceleration Model, Yan Li Jan 2015

An Investigation Of The Relationship Between Axonal Injury, Biomarker Expression And Mechanical Response In A Rodent Head Impact Acceleration Model, Yan Li

Wayne State University Dissertations

In the United States 1.4 million people sustain traumatic brain injury (TBI) each year, resulting in 235,000 hospitalizations and 50,000 fatalities annually. Traumatic axonal injury (TAI) is a serious outcome of TBI that accounts for 40-50% of hospitalizations due to head injury and one third of the mortality due to TBI, and it is difficult to diagnose and evaluate. The purpose of this dissertation is to determine mechanical injury predictors for TAI and identify potential biomarkers to evaluate TAI.

In this dissertation, a modified Marmarou impact acceleration injury model was developed to allow the monitoring of velocity ...


How Atomic Level Interactions Drive Membrane Fusion: Insights From Molecular Dynamics Simulations, Navendu Bhatnagar Jan 2013

How Atomic Level Interactions Drive Membrane Fusion: Insights From Molecular Dynamics Simulations, Navendu Bhatnagar

Wayne State University Dissertations

This project is focused on identifying the role of key players in the membrane fusion process at the atomic level with the use of molecular dynamics simulations. Membrane fusion of apposed bilayers is one of the most fundamental and frequently occurring biological phenomena in living organisms. It is an essential step in several cellular processes such as neuronal exocytosis, sperm fusion with oocytes and intracellular fusion of organelles to name a few. Membrane fusion is a frequent process in a living organism but is still not fully understood at the atomic level in terms of the role of various factors ...


Longissimus Muscle Fatigue And Injury Response Due To Electrical Stimulation With Varied Work/Rest Ratios, Peter Wawrow Jan 2011

Longissimus Muscle Fatigue And Injury Response Due To Electrical Stimulation With Varied Work/Rest Ratios, Peter Wawrow

Wayne State University Dissertations

LONGISSIMUS MUSCLE FATIGUE AND INJURY RESPONSE DUE TO ELECTRICAL STIMULATION WITH VARIED WORK/REST RATIOS

BY

PETER WAWROW

May 2011

Advisor: John Cavanaugh, MD

Major: Biomedical Engineering

Degree: Doctor of Philosophy

The estimated yearly cost of lost-time work injuries and illnesses is $140 billion. The average cost of musculoskeletal disorders (MSDs) exceeds all other claims. These injuries persist in spite of ergonomic interventions addressing known risk factors. Work/rest ratios have not received a significant amount of attention, particularly in low back disorders, and it is hypothesized that the lack of adequate rest within a work cycle may contribute to ...


Finite Element Reconstruction Of Real World Aortic Injury In Near-Side Lateral Automotive Crashes With Conceptual Countermeasures, Aditya Neelakanta Belwadi Jan 2011

Finite Element Reconstruction Of Real World Aortic Injury In Near-Side Lateral Automotive Crashes With Conceptual Countermeasures, Aditya Neelakanta Belwadi

Wayne State University Dissertations

Traumatic rupture of the aorta (TRA) remains the second most common cause of death associated with motor vehicle crashes after brain injury. On an average, nearly 8,000 people die annually in the United States due to blunt injury to the aorta. It is observed that more than 80% of occupants who suffer an aortic injury die at the scene due to exsanguination into the chest. With the advent of more accurate and established human body finite element (FE) models, FE crash reconstruction methods may become a valuable tool when assessing crash scenarios and occupant injury mechanisms.

The current study ...


A Multi-Species Analysis Of Biomechanical Responses Of The Head To A Shock Wave, Richard Bolander Jan 2011

A Multi-Species Analysis Of Biomechanical Responses Of The Head To A Shock Wave, Richard Bolander

Wayne State University Dissertations

Shock wave induced brain injury remains a field of research that has great consequences for the rehabilitation of soldiers and civilians that are exposed to an explosion. As such, for the research to be successful in developing strategies to mitigate the effects of these injuries, appropriate research methods need to be developed. Animal models are currently employed to understand the brain's response to a shock wave exposure. Unfortunately no criteria have been established that indicates in what way the mechanical inputs that the cells in an animal's brain are subjected to are similar to a human. The purpose ...


Computational Simulation Of Skull Fracture Patterns In Pediatric Subjects Using A Porcine Model, Christina Devito Wagner Jan 2011

Computational Simulation Of Skull Fracture Patterns In Pediatric Subjects Using A Porcine Model, Christina Devito Wagner

Wayne State University Dissertations

In cases of suspected child abuse with skeletal trauma, it is often the role of the injury biomechanist, forensic pathologist, clinical radiologist, and forensic anthropologist to determine the mechanism of injury when the child victims cannot speak for themselves. This is a challenging task, especially for the head, as comprehensive biomechanical data on skull fracture in infants and children do not currently exist, and frequently the determination regarding cause of injury is based on anecdotal evidence from the medical literature and unsubstantiated eyewitness accounts. The current process may result in unreliable autopsy interpretation and miscarriages of justice due to a ...