Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Biomedical Engineering and Bioengineering

Development And Application Of Gadolinium Free Cardiac Magnetic Resonance Fibrosis Imaging For Multiscale Study Of Heart Failure In Patients With End Stage Renal Disease, Tori A. Stromp Jan 2016

Development And Application Of Gadolinium Free Cardiac Magnetic Resonance Fibrosis Imaging For Multiscale Study Of Heart Failure In Patients With End Stage Renal Disease, Tori A. Stromp

Theses and Dissertations--Physiology

Cardiac magnetic resonance (CMR) is a powerful tool to noninvasively image ventricular fibrosis. Late gadolinium enhancement (LGE) CMR identifies focal and, with T1 mapping, diffuse fibrosis. Despite prevalent cardiac fibrosis and heart failure, patients with end stage renal disease (ESRD) are excluded from LGE. Absence of a suitable diagnostic has limited the understanding of heart failure and obstructed development of therapies in the setting of ESRD. A quantitative, gadolinium free fibrosis detection method could overcome this critical barrier, propelling the advancement of diagnostic, monitoring, and therapy options. This project describes the development of a gadolinium free CMR technique and application …


Automated Solid-Substrate Cultivation Of The Anaerobic Bacterium Clostridium Thermocellum, Mathew J. Ruwaya Jan 2016

Automated Solid-Substrate Cultivation Of The Anaerobic Bacterium Clostridium Thermocellum, Mathew J. Ruwaya

Theses and Dissertations--Biosystems and Agricultural Engineering

The organism Clostridium thermocellum grows on cellulosic substrates and produces ethanol, acetate, lactate, formic acid, and CO2. The organic acids produced alter the growth environment in which the bacteria grows and ultimately inhibit bacterial growth. One method which has been used successfully to maintain the system at acceptable growth conditions is to intermittently flush out the spent media and metabolic products and replace with new fermentation media. Our goal was to design and build an automated system that will automatically flush the spent media from the growing culture and resupply new media without manual intervention. An automated control …