Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Biomedical Engineering and Bioengineering

Engineering Bacterial Gene Expression: Applications Towards Biofuels And Antibiotic Resistance, Peter Britton Otoupal Jan 2018

Engineering Bacterial Gene Expression: Applications Towards Biofuels And Antibiotic Resistance, Peter Britton Otoupal

Chemical & Biological Engineering Graduate Theses & Dissertations

Nature is rarely static. Organisms live in diverse and stressful environments that necessitate rapid response strategies for survival. Microorganisms have responded to this by evolving bet-hedging, wherein they exhibit constitutively heterogeneous gene expression to maximize fitness across numerous background. The goal of this thesis is to “hijack” this phenomenon using novel gene expression engineering techniques to alter how bacteria respond to their environments, in order to address pressing societal concerns.

This begins with a systematic exploration of how bacterial gene expression naturally responds to antibiotics and biofuels. This reveals promising gene candidates for targeted manipulation, for which a library of ...


In Situ Designer Lipid Production: Integration Of Novel Characteristics And Behaviors Into Synthetic Cell Membranes, Danielle S. Konetski Jan 2018

In Situ Designer Lipid Production: Integration Of Novel Characteristics And Behaviors Into Synthetic Cell Membranes, Danielle S. Konetski

Chemical & Biological Engineering Graduate Theses & Dissertations

This thesis investigated the coupling of lysolipids and functionalized tails for in situ formation of synthetic liposomes designed to enable specific characteristics or behaviors in applications ranging from drug delivery to the advancement of artificial cell development. Copper-catalyzed Azide-Alkyne Cycloaddition (CuAAC) mediated lipid coupling was improved via incorporation of a photoinitiation system. Here, photo-CuAAC enabled spatiotemporal control over liposome assembly, an over 400-fold increase in formation density, and control over the maximal cross-sectional area of the liposomes formed.

Thiol-Michael mediated lipid coupling was enabled using thiol-functionalized lysolipids and acrylate tails where phospholipids were produced over 48 hours with approximate 90 ...


Modeling And Designing Genetic Devices Using Transcriptional Interference In Escherichia Coli, Antoni Escalas Bordoy Jan 2018

Modeling And Designing Genetic Devices Using Transcriptional Interference In Escherichia Coli, Antoni Escalas Bordoy

Chemical & Biological Engineering Graduate Theses & Dissertations

Microorganisms inhabit every extreme location of our planet. In their journey through the ages, they have been able to incredibly adapt to a myriad of different environmental conditions. A key mechanism for their success has been their ability to respond to environmental and nutritional changes through regulatory programs primarily encoded at the transcriptional level. This adaptability to new environments is what encourages scientists to believe in engineering a biological revolution that will transform our lives due to its potential to result in innovative approaches for bioremediation, sustainable energy production, and biomedical therapies. This thesis explores the potential of the phenomenon ...


Connecting Protein Structure And Dynamics On Biomaterials With The Foreign Body Response, David Faulon Marruecos Jan 2018

Connecting Protein Structure And Dynamics On Biomaterials With The Foreign Body Response, David Faulon Marruecos

Chemical & Biological Engineering Graduate Theses & Dissertations

The harsh environment of the foreign body response (FBR) has the potential to negatively impact the implantations of biomaterials in the body. The FBR is initiated by inflammatory cells that recognize the material as foreign through surface-adsorbed proteins. When proteins interact with surfaces, they can unfold and expose epitopes that may be recognized by immune cells and trigger a series of reactions. Importantly, the presentation of unfolded proteins is directly influenced by the highly dynamic and heterogeneous behavior of proteins in near-surface environments, as well as by the physicochemical features of the underlying surface. Such behavior is the result of ...