Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

Electrical and Computer Engineering

2014

Institution
Keyword
Publication

Articles 1 - 30 of 39

Full-Text Articles in Biomedical Engineering and Bioengineering

Design Of A Haptic Interface For Medical Applications Using Magneto-Rheological Fluid Based Actuators, Nima Najmaei Dec 2014

Design Of A Haptic Interface For Medical Applications Using Magneto-Rheological Fluid Based Actuators, Nima Najmaei

Electronic Thesis and Dissertation Repository

This thesis reports on the design, construction, and evaluation of a prototype two degrees-of-freedom (DOF) haptic interface, which takes advantage of Magneto-Rheological Fluid (MRF) based clutches for actuation. Haptic information provides important cues in teleoperated systems and enables the user to feel the interaction with a remote or virtual environment during teleoperation. The two main objectives in designing a haptic interface are stability and transparency. Indeed, deficiencies in these factors in haptics-enabled telerobotic systems has the introduction of haptics in medical environments where safety and reliability are prime considerations. An actuator with poor dynamics, high inertia, large size, and heavy ...


An Optogenetic Brain-Machine Interface For Spatiotemporal Neuromodulation, Ryan Andrew Baumgartner Dec 2014

An Optogenetic Brain-Machine Interface For Spatiotemporal Neuromodulation, Ryan Andrew Baumgartner

Theses and Dissertations

Direct neural stimulation has recently become a standard therapy for neurological disorders such as Parkinson's Disease, Essential Tremors, and Dystonia. Currently, deep brain electro-stimulation and neuro-pharmaceutical treatments are the dominant therapeutic options available to the public. As our understanding of brain function and neurological diseases improves, we are able to develop more advanced neuromodulation techniques. These methods could become viable treatment solutions for treating brain dysfunction. Optogenetics, first introduced by a research team led by Karl Deisseroth at Stanford University, has proved to be a versatile technique with remarkable potential to be used in treatments for brain disorders, dysfunction ...


Induction Of Differentiation Of Dental Pulp-Derived Mesenchymal Stem Cells (Dpsc), Aubrey Young Dec 2014

Induction Of Differentiation Of Dental Pulp-Derived Mesenchymal Stem Cells (Dpsc), Aubrey Young

UNLV Theses, Dissertations, Professional Papers, and Capstones

Mesenchymal stem cells are derived from a variety of human tissues and are being bioengineered and studied for possible uses in the advancement of medicine. Recent efforts are being focused on Dental Pulp Stem Cells (DPSC's) due to the accessibility of this tissue. Many factors influence DPSC quality and quantity, including the specific methods used to isolate, collect, concentrate, and store these isolates once they are removed. Ancillary factors, such as the choice of media, the selection of early versus late passage cells, and cryopreservation techniques may also influence the differentiation potential and proliferative capacity of DPSC isolates.

The ...


A Low-Power Approach For Front End Biological Signal Conditioning, Logan Smith Taylor Dec 2014

A Low-Power Approach For Front End Biological Signal Conditioning, Logan Smith Taylor

Masters Theses

In a lab-on-a-chip (LOC) application, the measurement of small analog signals such as local temperature variation often involves detection of very low-level signals in a noisy micro-scale environment. This is true for other biomedical monitoring systems as well. These systems observe various physiological parameters or electrochemical reactions that need to be tracked electrically. For temperature measurement pyroelectric transducers represent an efficient solution in terms of speed, sensitivity, and scale of integration, especially when prompt and accurate temperature monitoring is desired.

The ability to perform laboratory operations on a small scale using miniaturized LOC devices is a promising biosensing technique. The ...


Algorithm-Circuit Co-Design For Detecting Symptomatic Patterns In Biological Signals, Himanshu Markandeya Oct 2014

Algorithm-Circuit Co-Design For Detecting Symptomatic Patterns In Biological Signals, Himanshu Markandeya

Open Access Dissertations

The advancement in scaled Silicon technology has accelerated the development of a wide range of applications in various fields including medical technology. It has immensely contributed to finding solutions for monitoring general health as well as alleviating intractable disorders in the form of implantable and wearable systems. This necessitates the development of energy efficient and functionally efficacious systems. This thesis has explored the algorithm-circuit co-design approach for developing an energy efficient epileptic seizure detection processor which could be used for implantable epilepsy prosthesis. Novel wavelet transform based algorithms are proposed for accurate detection of epileptic seizures. Energy efficient techniques at ...


Characterization Of A Contact-Stylus Surface Digitization Method Using Collaborative Robots: Accuracy Evaluation In The Context Of Shoulder Replacement Or Resurfacing, Sara Saud Zimmo Sep 2014

Characterization Of A Contact-Stylus Surface Digitization Method Using Collaborative Robots: Accuracy Evaluation In The Context Of Shoulder Replacement Or Resurfacing, Sara Saud Zimmo

Electronic Thesis and Dissertation Repository

Total shoulder arthroplasty (TSA) is the third most common joint replacement. While robot-assisted hip and knee replacement technologies have enjoyed extensive development, this has been limited in the upper limb. This work focused on quantifying the localization accuracy of a robotic system, and evaluating its efficacy in the context of TSA.

A collaborative robot was fitted with a stylus tip to perform manual surface digitizations using the robot’s encoder output. In the first experiment, two precision-machined master cubes, representing the working volume around a glenoid structure, were used for system validation. Next, cadaveric glenoids were digitized and compared to ...


Evaluating Human Performance For Image-Guided Surgical Tasks, Matthew Kenneth Kramers Aug 2014

Evaluating Human Performance For Image-Guided Surgical Tasks, Matthew Kenneth Kramers

Electronic Thesis and Dissertation Repository

The following work focuses on the objective evaluation of human performance for two different interventional tasks; targeted prostate biopsy tasks using a tracked biopsy device, and external ventricular drain placement tasks using a mobile-based augmented reality device for visualization and guidance. In both tasks, a human performance methodology was utilized which respects the trade-off between speed and accuracy for users conducting a series of targeting tasks using each device. This work outlines the development and application of performance evaluation methods using these devices, as well as details regarding the implementation of the mobile AR application. It was determined that the ...


Cryoimaging-Microscopy Implementation For 3d Optical Imaging, Mohammad Masoudimotlagh Aug 2014

Cryoimaging-Microscopy Implementation For 3d Optical Imaging, Mohammad Masoudimotlagh

Theses and Dissertations

The structures and biochemistry properties of biological tissues are mostly affected by diseases. The visualization of organ structure and biochemistry helps in early detection and progression monitoring of diseases.

Although, 2D imaging has traditionally been used to gain information from the tissue, it does not accurately represent many of the structures and functions. There currently exists a need for sensitive and specific methods to show detailed information about the structure of the tissue with high resolution and in 3D. The potential advantage of the high resolution 3D images is the ability to accurately probe structural and biochemical properties of the ...


Cfd Simulation Of The Thermal Performance Of A Parallel Counter-Parallel Flow Heat Exchanger For The Treatment Of Hypothermia, Alex Heller Aug 2014

Cfd Simulation Of The Thermal Performance Of A Parallel Counter-Parallel Flow Heat Exchanger For The Treatment Of Hypothermia, Alex Heller

UNLV Theses, Dissertations, Professional Papers, and Capstones

Hypothermia is a life-threatening condition. Currently, active warming methods are the most effective treatment for dysthermic patients. The aim of this study is to investigate the use of computational fluid dynamics (CFD) in evaluating the thermal performance of a parallel/counter-parallel flow heat exchanger used as part of a fluid warmer to treat Hypothermia. The 3D model of the heat exchanger is divided into three regions; Infusate (fluid to be heated), Hot Water (heating fluid), and a Solid Region (wall). At the end of the heat exchanger, an elbow section is used to create the counter-parallel flow arrangement specific to ...


Design, Characterization And Application Of A Multiple Input Stethoscope Apparatus, Spencer Geng Wong Aug 2014

Design, Characterization And Application Of A Multiple Input Stethoscope Apparatus, Spencer Geng Wong

Master's Theses and Project Reports

For this project, the design, implementation, characterization, calibration and possible applications of a multiple transducer stethoscope apparatus were investigated. The multi-transducer sensor array design consists of five standard stethoscope diaphragms mounted to a rigid frame for a-priori knowledge of their relative spatial locations in the x-y plane, with compliant z-direction positioning to ensure good contact and pressure against the subject’s skin for reliable acoustic coupling. When this apparatus is properly placed on the body, it can digitally capture the same important body sounds investigated with standard acoustic stethoscopes; especially heart sounds. Acoustic signal inputs from each diaphragm are converted ...


Design Of The High-Speed Stereo Radiography System, John C. Ivester Iv Aug 2014

Design Of The High-Speed Stereo Radiography System, John C. Ivester Iv

Electronic Theses and Dissertations

Orthopaedic pathologies often involve disruption of the mechanical environment of a joint at/below the mm scale. The ability to measure biomechanical kinematics at the sub-mm scale is essential for obtaining valuable insight into pathologies, but small motions of the joints are difficult to quantify. Estimates of skeletal kinematics are commonly made from optical motion capture systems and markers placed on the skin. The error caused by external marker movement is largely avoided with x-ray motion capture. Dynamic radiography uses a series of x-ray images recorded at high-speed and captures in-vivo joint motion. Uncovering the mechanical foundation of orthopaedic pathologies ...


Improving Golf Putt Performance With Statistical Learning Of Eeg Signals, Qing Guo Aug 2014

Improving Golf Putt Performance With Statistical Learning Of Eeg Signals, Qing Guo

Theses and Dissertations

In this thesis, a machine learning based method is proposed to predict the putt outcomes of golfers based on their electroencephalogram (EEG) data. The method can be used as a core building block of a brain-computer interface, which is designed to provide guidance to golf players based on their EEG patterns. The proposed method includes three steps. First, multi-channel 1-second EEG trials were extracted during golfers' preparation of putting. Second, different features are calculated such as correlation coefficient, power spectrum density and coherence, which are used as features for the classification algorithm. To predict golfers' performance, the support vector machine ...


Human Metaphase Chromosome Analysis Using Image Processing, Akila M.S Subasinghe Arachchige Jul 2014

Human Metaphase Chromosome Analysis Using Image Processing, Akila M.S Subasinghe Arachchige

Electronic Thesis and Dissertation Repository

Development of an effective human metaphase chromosome analysis algorithm can optimize expert time usage by increasing the efficiency of many clinical diagnosis processes. Although many methods exist in the literature, they are only applicable for limited morphological variations and are specific to the staining method used during cell preparation. They are also highly influenced by irregular chromosome boundaries as well as the presence of artifacts such as premature sister chromatid separation.

Therefore an algorithm is proposed in this research which can operate with any morphological variation of the chromosome across images from multiple staining methods. The proposed algorithm is capable ...


Particle Swarm Optimization Using Multiple Neighborhood Connectivity And Winner Take All Activation Applied To Biophysical Models Of Inferior Colliculus Neurons, Brandon S. Coventry Jul 2014

Particle Swarm Optimization Using Multiple Neighborhood Connectivity And Winner Take All Activation Applied To Biophysical Models Of Inferior Colliculus Neurons, Brandon S. Coventry

Open Access Theses

Age-related hearing loss is a prevalent neurological disorder, affecting as many as 63% of adults over the age of 70. The inability to hear and understand speech is a cause of much distress in aged individuals and is becoming a major public health concern as age-related hearing loss has also been correlated with other neurological disorders such as Alzheimer's dementia. The Inferior Colliculus (IC) is a major integrative auditory center, receiving excitatory and inhibitory inputs from several brainstem nuclei. This complex balance of excitation and inhibition gives rise to complex neural responses, which are measured in terms of firing ...


Numerical Study Of Poration And Ionic Conduction In Nanopores Caused By High-Intensity, Nanosecond Pulses In Cell, Hao Qiu Jul 2014

Numerical Study Of Poration And Ionic Conduction In Nanopores Caused By High-Intensity, Nanosecond Pulses In Cell, Hao Qiu

Electrical & Computer Engineering Theses & Disssertations

This dissertation focuses on the dynamics and bioeffects of electroporation of biological cell and ionic conduction in nanopores under high-intensity, nanosecond pulses. The electroporation model utilized the current continuity equation and the asymptotic Smoluchowski equation to explore the transmembrane potential and pore density of the plasma and intracellular membranes; the ionic conduction model employed the Poisson-Nernst-Planck equations and the Navier-Stokes equations to analyze the ionic current and ion concentration profile.

Nanosecond electric pulses of high-intensity amplitude can initiate electroporation of intracellular organelles. The pulse parameters and cell electrical properties, that can selectively electroporate liposomes but keep the plasma and nuclear ...


Empirical Modeling Of Asynchronous Scalp Recorded And Intracranial Eeg Potentials, Komalpreet Kaur Jul 2014

Empirical Modeling Of Asynchronous Scalp Recorded And Intracranial Eeg Potentials, Komalpreet Kaur

Electrical & Computer Engineering Theses & Disssertations

A Brain-Computer Interface (BCI) is a system that allows people with severe neuromuscular disorders to communicate and control devices using their brain signals. BCIs based on scalp-recorded electroencephalography (s-EEG) have recently been demonstrated to provide a practical, long-term communication channel to severely disabled users. These BCIs use time-domain s-EEG features based on the P300 event-related potential to convey the user's intent. The performance of s-EEG-based BCIs has generally stagnated in recent years, and high day-to-day performance variability exists for some disabled users. Recently intracranial EEG (i-EEG), which is recorded from the cortical surface or the hippocampus, has been successfully ...


Biomaterial Testing Methodology For Long-Term In Vivo Applications: Silicon Carbide Corrosion Resistance, Biocompatibility And Hemocompatibility, Maysam Nezafati Jun 2014

Biomaterial Testing Methodology For Long-Term In Vivo Applications: Silicon Carbide Corrosion Resistance, Biocompatibility And Hemocompatibility, Maysam Nezafati

Graduate Theses and Dissertations

Biomedical devices that function in-vivo offer a tremendous promise to improve the quality of life for many who suffer from disease and trauma. The most important consideration for these devices is that they interact with the physiological environment as designed without initiating a deleterious inflammatory response. ISO 10993 outlines the current international guideline for investigating the biocompatibility of such devices. Numerous groups report the use of ISO 10993 as the basis for their experimental evaluation of candidate materials for neuroprosthetics, as well as other biomedical devices, however most of these reports fail to completely comply with the standard. This leads ...


Plasmonic Optical Sensors: Performance Analysis And Engineering Towards Biosensing, Peipei Jia Jun 2014

Plasmonic Optical Sensors: Performance Analysis And Engineering Towards Biosensing, Peipei Jia

Electronic Thesis and Dissertation Repository

Surface plasmon resonance (SPR) sensing for quantitative analysis of chemical reactions and biological interactions has become one of the most promising applications of plasmonics. This thesis focuses on performance analysis for plasmonic sensors and implementation of plamonic optical sensors with novel nanofabrication techniques.

A universal performance analysis model is established for general two-dimensional plasmonic sensors. This model is based on the fundamental facts of surface plasmon theory. The sensitivity only depends on excitation light wavelength as well as dielectric properties of metal and dielectrics. The expression involves no structure-specified parameters, which validates this formula in broad cases of periodic, quasiperiodic ...


Clear Circuit Contact Lens, Paul Hecker Ii, Phillip Azar, Alexander Do, Benny Ng, Errol Leon Jun 2014

Clear Circuit Contact Lens, Paul Hecker Ii, Phillip Azar, Alexander Do, Benny Ng, Errol Leon

Electrical Engineering

The clear active contact lens project aims to address safety and hazard awareness with an unexplored field of eye wear technology. With advancements in nanotechnology and the advent of circuits on contact lens, this project is one of the first research and development into this new field, following University of Washington and Google. The team focuses on the safety and biocompatibility of the contact lens for a comfortable ease of use. The designs push the limits of thin film printed technology with its pursuit of fine designs of 250μm antennas. The project streamlines the manufacturing process for a combination substrate ...


Team Omnimouse, Derek J. Halman, Josh B. Porter, Steven A. Silver, Ian S. Stemper Jun 2014

Team Omnimouse, Derek J. Halman, Josh B. Porter, Steven A. Silver, Ian S. Stemper

Computer Engineering

INFORMATION, DATA, FIGURES AND DRAWINGS EMBODIED IN THIS DOCUMENT ARE STRICTLY CONFIDENTIAL AND ARE SUPPLIED ON THE UNDERSTANDING THAT THEY WILL NOT BE DISCLOSED TO THIRD PARTIES WITHOUT THE PRIOR WRITTEN CONSENT OF QUALITY OF LIFE PLUS.


Alternate Computer Input Device For Individuals With Quadriplegia, Tobais Elder, Michelle Martinez, David Sylvester Jun 2014

Alternate Computer Input Device For Individuals With Quadriplegia, Tobais Elder, Michelle Martinez, David Sylvester

Biomedical Engineering

This project details the design development of an alternative computer input system that allows a person with quadriplegia to move a computer's cursor and activate left and right click button inputs. After researching and analyzing possible solutions, an end design was chosen that most appropriately satisfied all user requirements and engineering specifications. This final design employs a head mounted Inertial Measurement Unit (IMU) with 9 DoF (Degrees of Freedom) to track head movements and correlate these motions to computer cursor movements. A Sip-Puff Transducer monitors and interprets a user's application of negative and positive air pressure differentials to ...


Sonar For The Visually Impaired, Anastasia Newark, Edwin Ng, Scott Terhorst Jun 2014

Sonar For The Visually Impaired, Anastasia Newark, Edwin Ng, Scott Terhorst

Biomedical Engineering

There are currently no inexpensive assistive devices that allow the visually impaired detect low hanging objects that are above waist height and may cause injury, such as a rope or tree branch. The challenge presented to the team by the Quality of Life Plus Lab (QL+) was to develop a Sonar Cane device that attaches to a traditional white cane to address this problem. This device must be lightweight, inexpensive to manufacture, have a long battery life, and accurately detect obstacles to prevent user injury.


Monitoring Changes In Hemodynamics Following Optogenetic Stimulation, Seth Thomas Frye May 2014

Monitoring Changes In Hemodynamics Following Optogenetic Stimulation, Seth Thomas Frye

Theses and Dissertations

The brain is composed of billions of neurons, all of which connected through a vast network. After years of study and applications of different technologies and techniques, there are still more questions than answers when it comes to the fundamental functions of the brain. This project aims to provide a new tool which can be used to gain a better understanding of the fundamental mechanisms that govern neurological processes inside the brain. In order for neural networks to operate, blood has to be supplied through neighboring blood vessels. As such, the increase or decrease in the blood supply has been ...


Optical Studies Of Oxidative Stress In Lung Tissue: Rodent Models, Reyhaneh Sepehr May 2014

Optical Studies Of Oxidative Stress In Lung Tissue: Rodent Models, Reyhaneh Sepehr

Theses and Dissertations

Objectives: There currently exists a need for reliable measurements of tissue metabolic state at cellular levels. The objective of this research was to study tools capable of evaluating cellular redox states in intact tissue. To meet this goal, three different instruments (cryoimager, fluorometer, and fluorescent microscope) were used to study the metabolism and functions of the mitochondria at different levels and regimes (cryo, ex vivo, in vivo and in vitro).

Introduction: Through optical monitoring of autofluorescent mitochondrial metabolic coenzymes, as well as exogenous fluorophores, the state of mitochondria can be probed in real time in many intact organs and in ...


Modeling, Analysis, And Control Of A Mobile Robot For In Vivo Fluoroscopy Of Human Joints During Natural Movements, Matthew A. Young May 2014

Modeling, Analysis, And Control Of A Mobile Robot For In Vivo Fluoroscopy Of Human Joints During Natural Movements, Matthew A. Young

Doctoral Dissertations

In this dissertation, the modeling, analysis and control of a multi-degree of freedom (mdof) robotic fluoroscope was investigated. A prototype robotic fluoroscope exists, and consists of a 3 dof mobile platform with two 2 dof Cartesian manipulators mounted symmetrically on opposite sides of the platform. One Cartesian manipulator positions the x-ray generator and the other Cartesian manipulator positions the x-ray imaging device. The robotic fluoroscope is used to x-ray skeletal joints of interest of human subjects performing natural movement activities. In order to collect the data, the Cartesian manipulators must keep the x-ray generation and imaging devices accurately aligned while ...


Reading And Wirelessly Sending Eeg Signals Using Arduinos And Xbee Radios To Control A Robot, Andrew Paul Simms May 2014

Reading And Wirelessly Sending Eeg Signals Using Arduinos And Xbee Radios To Control A Robot, Andrew Paul Simms

Electrical Engineering Undergraduate Honors Theses

The objective of this project is to develop an EEG device that can read brainwaves from an individual, analyze the data, and use the result to send a wireless signal using Arduinos and XBee Radios to a Boe-bot to perform an action. One of the goals of this project is to read EEG data with a higher sampling frequency than a previously manufactured EEG device. The second part of the project used the device developed to differentiate an individual’s thinking between right and left and then send a simple signal to a robot using an XBee radio to perform ...


Wirelesseeg: Data Aquisition + Handheld Device, Michael Dylan Snowden, Madeline Threatt, Brent Mcferrin, David Platillero, Karsten Solies, Lindsey Hopf May 2014

Wirelesseeg: Data Aquisition + Handheld Device, Michael Dylan Snowden, Madeline Threatt, Brent Mcferrin, David Platillero, Karsten Solies, Lindsey Hopf

Chancellor’s Honors Program Projects

No abstract provided.


Oriented Collagen And Applications Of Waveguide Evanescent Field Scattering (Wefs) Microscopy, Qamrun Nahar Apr 2014

Oriented Collagen And Applications Of Waveguide Evanescent Field Scattering (Wefs) Microscopy, Qamrun Nahar

Electronic Thesis and Dissertation Repository

In this thesis, Waveguide Evanescent Field Scattering (WEFS) microscopy is developed as a non-invasive, label-free live cell imaging technique. This new high-contrast imaging can be employed to study the first hundred nanometers from the surface as it utilizes the evanescent field of a waveguide as the illumination source. Previously, waveguide evanescent field fluorescence (WEFF) microscopy was developed as a fluorescence imaging technique comparable to the total internal reflection fluorescent (TIRF) microscopy. Both the WEFF and WEFS technique utilizes the same fundamental concepts except in WEFS microscopy imaging is accomplished without the application of any fluorescent labeling. In this work, bacterial ...


Computer Modeling And Simulation Of Implantable Medical Device Heating Due To Mri Gradient Coil Fields, Bryan David Stem Apr 2014

Computer Modeling And Simulation Of Implantable Medical Device Heating Due To Mri Gradient Coil Fields, Bryan David Stem

Open Access Theses

For patients with implantable medical devices, the ability to safely undergo MRI scanning is critical to ensuring the highest standard of care. The gradient coils of an MRI generate kilohertz frequency, time varying magnetic fields. These magnetic fields induce a voltage on the external case of metallic, implantable medical devices through electromagnetic induction. Since the magnetic field generated by a gradient coil is time varying, the induced voltage results in the flow of eddy currents which can cause heating effects. These heating effects have been successfully modeled using ANSYS Maxwell and ANSYS Mechanical software packages.

The multi-physics simulation and solution ...


Developing A Hardware Platform For A Low-Power, Low-Cost, Size-Constrained Biomechanical Telemetry System, Aditya Balasubramanian Apr 2014

Developing A Hardware Platform For A Low-Power, Low-Cost, Size-Constrained Biomechanical Telemetry System, Aditya Balasubramanian

Open Access Theses

As sport-related traumatic brain injuries face increasing attention from the media and the general public, the need to be able to detect brain injury quickly, inexpensively and accurately is more important than ever. Commercially-available event-based systems exist that claim to achieve this goal; however, they collect little to no continuous-time data and primarily indicate when a pre-determined acceleration threshold has been exceeded under the unvalidated assumption that a potentially concussive blow has occurred. Recent findings by the Purdue Neurotrauma Group (PNG) have indicated that repeated exposure to both concussive and subconcussive blows can result in cumulative trauma disorder. To track ...