Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Biomedical Engineering and Bioengineering

Applied Machine Learning In Extrusion-Based Bioprinting, Shuyu Tian Jan 2021

Applied Machine Learning In Extrusion-Based Bioprinting, Shuyu Tian

Theses and Dissertations

Optimization of extrusion-based bioprinting (EBB) parameters have been systematically conducted through experimentation. However, the process is time and resource-intensive and not easily translatable across different laboratories. A machine learning (ML) approach to EBB parameter optimization can accelerate this process for laboratories across the field through training using data collected from published literature. In this work, regression-based and classification-based ML models were investigated for their abilities to predict printing outcomes of cell viability and filament diameter for cell-containing alginate and gelatin composite hydrogels. Regression-based models were investigated for their ability to predict suitable extrusion pressure given desired cell viability when keeping …


Modeling Liver Diseases Using Hepatic Cell Microarrays, Alexander David Roth Jan 2018

Modeling Liver Diseases Using Hepatic Cell Microarrays, Alexander David Roth

ETD Archive

Hepatocellular carcinoma (HCC) is an invasive and aggressive cancer of the liver that arises due to chronic cirrhosis. Research into understanding HCC has focused on two-dimensional (2D) and three-dimensional (3D) technologies to simulate the liver microenvironment and use animal models to model how HCC affects the rest of the body. 3D hydrogel models are desired because they can mimic the transport behavior observed in vivo by structurally mimicking the extracellular matrix (ECM) without the ethical concerns of animal models. However, hydrogels can be toxic to cells and require optimal procedures for appropriate handling. In this study, we created 3D models …


An Injectable Stem Cell Delivery System For Treatment Of Musculoskeletal Defects, Shirae Leslie Jan 2016

An Injectable Stem Cell Delivery System For Treatment Of Musculoskeletal Defects, Shirae Leslie

Theses and Dissertations

The goal of this research was to develop a system of injectable hydrogels to deliver stem cells to musculoskeletal defects, thereby allowing cells to remain at the treatment site and secrete soluble factors that will facilitate tissue regeneration. First, production parameters for encapsulating cells in microbeads were determined. This involved investigating the effects of osmolytes on alginate microbead properties, and the effects of alginate microbead cell density, alginate microbead density, and effects of osteogenic media on microencapsulated cells. Although cells remained viable in the microbeads, alginate does not readily degrade in vivo for six months. Therefore, a method to incorporate …


Strategies For Improving Oxygen Transport And Mechanical Strength In Alginate-Based Hydrogels, Joseph C. White Apr 2014

Strategies For Improving Oxygen Transport And Mechanical Strength In Alginate-Based Hydrogels, Joseph C. White

Doctoral Dissertations

Hydrogels have attracted significant interest over the past several decades due to their outstanding versatility as biomaterials. Alginate-based hydrogels are among the most popular studied due to their low cost, biocompatibility, and tunable physical properties. However, as with all hydrogels, persistent oxygen solubility and poor mechanical strength limits their utility for creating macroscopic devices for biomedical use. This thesis presents two strategies for improving oxygen transport and mechanical properties of alginate-based hydrogel. The former involves incorporating perfluorocarbons, hydrophobic compounds with very high oxygen solubility, into the formulation. The perfluorocarbons are stabilized by nonionic surfactants, Pluronics®, and the emulsion is entrapped …