Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

Biomedical

EIM

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Biomedical Engineering and Bioengineering

Assessment Of Optimized Electrode Configuration In Electrical Impedance Myography Study Using Genetic Algorithm Via Finite Element Model, Somen Baidya Jan 2016

Assessment Of Optimized Electrode Configuration In Electrical Impedance Myography Study Using Genetic Algorithm Via Finite Element Model, Somen Baidya

Electronic Theses and Dissertations

Electrical Impedance Myography (EIM) is a neurophysiologic technique in which high- frequency, low-intensity electrical current is applied via surface electrodes over a muscle or muscle group of interest and the resulting electrical parameters (resistance, reactance and phase) are analyzed to isolate diseased muscles from healthy ones. Beside muscle properties, some other anatomic and non-anatomic factors like muscle shape, subcutaneous fat (SF) thickness, inter-electrode distance, etc. also impact the major EIM parameters and thus affect the EIM analysis outcomes. The purpose of this study is to explore the effects of variation in some of these factors impose on EIM parameters and …


Assessment Of Electrode Configurations Of Electrical Impedance Myography For The Evaluation Of Neuromuscular Diseases, Khondokar Mohammad Fazle Rabbi Jan 2015

Assessment Of Electrode Configurations Of Electrical Impedance Myography For The Evaluation Of Neuromuscular Diseases, Khondokar Mohammad Fazle Rabbi

Electronic Theses and Dissertations

Electrical impedance myography (EIM) is a painless, noninvasive approach to measure the neuromuscular disease status. EIM parameters- resistance (R), reactance (X) and phase (θ) depend significantly on subcutaneous fat thickness, muscle size and inter electrode distance. The objective of this research is to find an electrode configuration which can minimize the effects on EIM parameters due to subcutaneous fat thickness variation. In this study, a model of human upper arm was developed using finite element method (FEM), which has already been established as an appropriate approach for the analysis of non-symmetrical shape for assessing alternations of muscle in disease-induced changes …