Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 14 of 14

Full-Text Articles in Biomedical Engineering and Bioengineering

When The Brain Plays A Game: Neural Responses To Visual Dynamics During Naturalistic Visual Tasks, Jason Ki Jan 2021

When The Brain Plays A Game: Neural Responses To Visual Dynamics During Naturalistic Visual Tasks, Jason Ki

Dissertations and Theses

Many day-to-day tasks involve processing of complex visual information in a continuous stream. While much of our knowledge on visual processing has been established from reductionist approaches in lab-controlled settings, very little is known about the processing of complex dynamic stimuli experienced in everyday scenarios. Traditional investigations employ event-related paradigms that involve presentation of simple stimuli at select locations in visual space and discrete moments in time. In contrast, visual stimuli in real-life are highly dynamic, spatially-heterogeneous, and semantically rich. Moreover, traditional experiments impose unnatural task constraints (e.g., inhibited saccades), thus, it is unclear whether theories developed under the reductionist …


Characterization Of Modulation And Coherence In Sensorimotor Rhythms Using Different Electroencephalographic Signal Derivations, Stephen Dundon Jan 2021

Characterization Of Modulation And Coherence In Sensorimotor Rhythms Using Different Electroencephalographic Signal Derivations, Stephen Dundon

Theses and Dissertations--Biomedical Engineering

Electroencephalography (EEG) is a widely used technique for monitoring and analyzing brain activity in experimental, diagnostic, and therapeutic applications. Since EEG is sensitive to noise and artefact sources, referential signals at different locations can be combined in different ways to improve signal quality and better localize cortical activity. Four signal derivations were compared against referential EEG in terms of their ability to measure the alpha rhythm modulation (or reactivity) and spatial coherence associated with an eye closure task: a common average reference (CAR), a local average reference (LAR), a large Laplacian (LL), and a focal Laplacian (FL) estimated using a …


Estimating Affective States In Virtual Reality Environments Using The Electroencephalogram, Meghan R. Kumar Jan 2021

Estimating Affective States In Virtual Reality Environments Using The Electroencephalogram, Meghan R. Kumar

Theses and Dissertations

Recent interest in high-performance virtual reality (VR) headsets has motivated research efforts to increase the user's sense of immersion via feedback of physiological measures. This work presents the use of electroencephalographic (EEG) measurements during observation of immersive VR videos to estimate the user's affective state. The EEG of 30 participants were recorded as each passively viewed a series of one minute immersive VR video clips and subjectively rated their level of valence, arousal, dominance, and liking. Correlates between EEG spectral bands and the subjective ratings were analyzed to identify statistically significant frequencies and electrode locations across participants. Model feasibility and …


Machine Learning Approach For Vigilance State Classification In Mice, Anik Muhury Jan 2021

Machine Learning Approach For Vigilance State Classification In Mice, Anik Muhury

Theses and Dissertations--Electrical and Computer Engineering

Sleep has a significant impact on cognitive abilities such as memory, reaction time, productivity, and creative thinking; however, there are many aspects of this important activity that are not clearly understood. Over the last century, researchers have developed technology and animal models to assist in the study of sleep. Manual sleep scoring is time consuming, reduces productivity, and is impacted by human scorer subjectivity. On the other hand, automatic sleep stage categorization can enhance consistency and reliability, aiding professionals in identifying sleep related health problems.

In recent times various studies reported significant achievements for automatic vigilance detection and overcome the …


Analysis Of Graded Sensorimotor Rhythms For Brain-Computer Interface Applications, Chase Allen Haddix Jan 2021

Analysis Of Graded Sensorimotor Rhythms For Brain-Computer Interface Applications, Chase Allen Haddix

Theses and Dissertations--Biomedical Engineering

The emerging field of neural engineering is tasked with applying engineering principles towards understanding neuroscience. A by-product of such a venture has been the development of a class of assistive devices known as brain-computer interfaces (BCIs) which link brain activity to actions performed by external devices. One application of this technology is in the rehabilitative sector for individuals with neuromuscular diseases and disorders. Despite tremendous efforts in the last few decades, a reliable signal that reflects fine motor control has yet to be adequately investigated. This gap in knowledge has limited the potential of BCIs to restore movement and communication. …


Analysis And Enhancement Of Human Cognitive Control Using Noninvasive Brain-Computer Interfaces, Soheil Borhani Dec 2020

Analysis And Enhancement Of Human Cognitive Control Using Noninvasive Brain-Computer Interfaces, Soheil Borhani

Doctoral Dissertations

Cognitive control including attention and working memory are crucial to human daily life. Whether a civilian who walks across a street or a military service member who is responsible for navigating a mission, cognitive control is involved, entirely. This ability is subject to impairment. People with attention disorder are easily disposed to distraction and lacks the ability to maintain the focus to a task. Multiple treatment strategies have been suggested which most of them has been pharmaceutical. Evidently, the medical treatment has side effects for long-term use. Moreover, it has a risk of drug misuse. Another line of treatment is …


Differentiating Epileptic From Psychogenic Nonepileptic Eeg Signals Using Time Frequency And Information Theoretic Measures Of Connectivity, Sarah Barnes Dec 2019

Differentiating Epileptic From Psychogenic Nonepileptic Eeg Signals Using Time Frequency And Information Theoretic Measures Of Connectivity, Sarah Barnes

Masters Theses

Differentiating psychogenic nonepileptic seizures from epileptic seizures is a difficult task that requires timely recording of psychogenic events using video electroencephalography (EEG). Interpretation of video EEG to distinguish epileptic features from signal artifacts is error prone and can lead to misdiagnosis of psychogenic seizures as epileptic seizures resulting in undue stress and ineffective treatment with antiepileptic drugs. In this study, an automated surface EEG analysis was implemented to investigate differences between patients classified as having psychogenic or epileptic seizures. Surface EEG signals were grouped corresponding to the anatomical lobes of the brain (frontal, parietal, temporal, and occipital) and central coronal …


Interpolated Perturbation-Based Decomposition As A Method For Eeg Source Localization, Gabriel Zelik Lipof Jun 2019

Interpolated Perturbation-Based Decomposition As A Method For Eeg Source Localization, Gabriel Zelik Lipof

Master's Theses

In this thesis, the perturbation-based decomposition technique developed by Szlavik [1] was used in an attempt to solve the inverse problem in EEG source localization. A set of dipole locations were forward modeled using a 4-layer sphere model of the head at uniformly distributed lead locations to form the vector basis necessary for the method. Both a two-dimensional and a pseudo-three-dimensional versions of the model were assessed with the two-dimensional model yielding decompositions with minimal error and the pseudo-three-dimensional version having unacceptable levels of error. The utility of interpolation as a method to reduce the number of data points to …


Eeg And Emg Sensorimotor Measurements To Assess Proprioception Following Acl Reconstruction, Teagan Frances Northrup Jan 2018

Eeg And Emg Sensorimotor Measurements To Assess Proprioception Following Acl Reconstruction, Teagan Frances Northrup

Honors Theses and Capstones

The Anterior Cruciate Ligament (ACL) is the primary source of rotational stability in the knee by preventing the tibia from sliding in front of the femur. When the ACL is torn, it typically must be repaired through reconstructive surgery which results in proprioceptive deficiencies in the knee. Proprioception plays an important role in understanding where one’s knee is in space, sensing movement and reacting accordingly. This study examines an alternative method of measuring proprioceptive responses to a stimulus (motion) by using electromyogram (EMG) and electroencephalogram (EEG) signals to observe muscle and brain activity. Two participants (one with an ACL reconstruction …


Closed-Loop Afferent Nerve Electrical Stimulation For Rehabilitation Of Hand Function In Subjects With Incomplete Spinal Cord Injury, Christopher J. Schildt Jan 2016

Closed-Loop Afferent Nerve Electrical Stimulation For Rehabilitation Of Hand Function In Subjects With Incomplete Spinal Cord Injury, Christopher J. Schildt

Theses and Dissertations--Biomedical Engineering

Peripheral nerve stimulation (PNS) is commonly used to promote use-dependent cortical plasticity for rehabilitation of motor function in spinal cord injury. Pairing transcranial magnetic stimulation (TMS) with PNS has been shown to increase motor evoked potentials most when the two stimuli are timed to arrive in the cortex simultaneously. This suggests that a mechanism of timing-dependent plasticity (TDP) may be a more effective method of promoting motor rehabilitation. The following thesis is the result of applying a brain-computer interface to apply PNS in closed-loop simultaneously to movement intention onset as measured by EEG of the sensorimotor cortex to test whether …


Experimental-Computational Analysis Of Vigilance Dynamics For Applications In Sleep And Epilepsy, Farid Yaghouby Jan 2015

Experimental-Computational Analysis Of Vigilance Dynamics For Applications In Sleep And Epilepsy, Farid Yaghouby

Theses and Dissertations--Biomedical Engineering

Epilepsy is a neurological disorder characterized by recurrent seizures. Sleep problems can cooccur with epilepsy, and adversely affect seizure diagnosis and treatment. In fact, the relationship between sleep and seizures in individuals with epilepsy is a complex one. Seizures disturb sleep and sleep deprivation aggravates seizures. Antiepileptic drugs may also impair sleep quality at the cost of controlling seizures. In general, particular vigilance states may inhibit or facilitate seizure generation, and changes in vigilance state can affect the predictability of seizures. A clear understanding of sleep-seizure interactions will therefore benefit epilepsy care providers and improve quality of life in patients. …


Improving Golf Putt Performance With Statistical Learning Of Eeg Signals, Qing Guo Aug 2014

Improving Golf Putt Performance With Statistical Learning Of Eeg Signals, Qing Guo

Graduate Theses and Dissertations

In this thesis, a machine learning based method is proposed to predict the putt outcomes of golfers based on their electroencephalogram (EEG) data. The method can be used as a core building block of a brain-computer interface, which is designed to provide guidance to golf players based on their EEG patterns. The proposed method includes three steps. First, multi-channel 1-second EEG trials were extracted during golfers' preparation of putting. Second, different features are calculated such as correlation coefficient, power spectrum density and coherence, which are used as features for the classification algorithm. To predict golfers' performance, the support vector machine …


Empirical Modeling Of Asynchronous Scalp Recorded And Intracranial Eeg Potentials, Komalpreet Kaur Jul 2014

Empirical Modeling Of Asynchronous Scalp Recorded And Intracranial Eeg Potentials, Komalpreet Kaur

Electrical & Computer Engineering Theses & Dissertations

A Brain-Computer Interface (BCI) is a system that allows people with severe neuromuscular disorders to communicate and control devices using their brain signals. BCIs based on scalp-recorded electroencephalography (s-EEG) have recently been demonstrated to provide a practical, long-term communication channel to severely disabled users. These BCIs use time-domain s-EEG features based on the P300 event-related potential to convey the user's intent. The performance of s-EEG-based BCIs has generally stagnated in recent years, and high day-to-day performance variability exists for some disabled users. Recently intracranial EEG (i-EEG), which is recorded from the cortical surface or the hippocampus, has been successfully used …


Dynamic Complexity And Causality Analysis Of Scalp Eeg For Detection Of Cognitive Deficits, Joseph Curtis Mcbride May 2014

Dynamic Complexity And Causality Analysis Of Scalp Eeg For Detection Of Cognitive Deficits, Joseph Curtis Mcbride

Doctoral Dissertations

This dissertation explores the potential of scalp electroencephalography (EEG) for the detection and evaluation of neurological deficits due to moderate/severe traumatic brain injury (TBI), mild cognitive impairment (MCI), and early Alzheimer’s disease (AD). Neurological disorders often cannot be accurately diagnosed without the use of advanced imaging modalities such as computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET). Non-quantitative task-based examinations are also used. None of these techniques, however, are typically performed in the primary care setting. Furthermore, the time and expense involved often deters physicians from performing them, leading to potential worse prognoses for patients.

If …