Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

The Summer Undergraduate Research Fellowship (SURF) Symposium

Angiotensin II

Articles 1 - 3 of 3

Full-Text Articles in Biomedical Engineering and Bioengineering

Angiotensin Ii-Induced Hypertension In Apolipoprotein E-Deficient Rats, Sydney N. Gorman, Craig J. Goergen, A Nicole Blaize Aug 2015

Angiotensin Ii-Induced Hypertension In Apolipoprotein E-Deficient Rats, Sydney N. Gorman, Craig J. Goergen, A Nicole Blaize

The Summer Undergraduate Research Fellowship (SURF) Symposium

Abdominal aortic aneurysms (AAAs) are characterized by a weakened vessel wall and a diameter 50% greater than normal. AAA are usually asymptomatic until they are near rupturing, which can be fatal if not treated immediately. Apolipoprotein E-deficient (ApoE) mice are commonly used as a model to study aneurysm growth. Our lab has created a similar model using rats, which are more similar to humans. This study focuses on the analysis of blood pressures collected from ApoE rats for comparison with a known mouse model. Five ApoE rats (1 female, 4 males) received subcutaneous implants of osmotic mini pumps that released …


Three Dimensional Quantification Of Angiotensin Ii-Induced Murine Abdominal Aortic Aneurysms Using High Frequency Ultrasound, Amelia R. Adelsperger, Alexa A. Yrineo, Hilary D. Schroeder, Ashley Nicole Blaize, Katherine E. Wilson, Evan H. Phillips, Frederick W. Damen, Craig J. Goergen Aug 2014

Three Dimensional Quantification Of Angiotensin Ii-Induced Murine Abdominal Aortic Aneurysms Using High Frequency Ultrasound, Amelia R. Adelsperger, Alexa A. Yrineo, Hilary D. Schroeder, Ashley Nicole Blaize, Katherine E. Wilson, Evan H. Phillips, Frederick W. Damen, Craig J. Goergen

The Summer Undergraduate Research Fellowship (SURF) Symposium

Abdominal aortic aneurysms (AAAs), a localized dilation of the vessel wall of 50% or more above normal, claims approximately 14,000 U.S. lives yearly due to aortic rupture. This commonly asymptomatic disease can only be treated by endovascular stent grafts or invasive surgery, usually after the AAA diameter reaches 5 cm. Because these treatment methods carry serious risk, stem cell therapy is being explored in order to provide a low risk option for managing smaller AAAs. To determine if stem cell therapy, once administered, could stabilize or reduce AAA growth, baseline 3D ultrasound measurements in a control group were first needed. …


Nonlinear Optical Microscopy Of Murine Abdominal Aortic Aneurysm, Katherine E. Wilson, Alexa A. Yrineo, Amelia J. Adelsperger, Hilary D. Schroeder, Delong Zhang, Jesse Zhang, Chien-Sheng Liao, Frederick W. Damen, Ji-Xin Cheng, Evan H. Phillips, Craig J. Goergen Aug 2014

Nonlinear Optical Microscopy Of Murine Abdominal Aortic Aneurysm, Katherine E. Wilson, Alexa A. Yrineo, Amelia J. Adelsperger, Hilary D. Schroeder, Delong Zhang, Jesse Zhang, Chien-Sheng Liao, Frederick W. Damen, Ji-Xin Cheng, Evan H. Phillips, Craig J. Goergen

The Summer Undergraduate Research Fellowship (SURF) Symposium

Abdominal aortic aneurysm (AAA) is a cardiovascular disease characterized by dilation and weakening of the vessel wall. AAA rupture is responsible for approximately 14,000 deaths annually in the United States [1]. Nonlinear optical (NLO) microscopy presents new possibilities for analyzing AAA tissue samples from murine models. Common NLO techniques are two-photon excitation fluorescence (TPEF), which detects the intrinsic autofluorescent properties of elastin, and second-harmonic generation (SHG), which is specific for collagen fibrils. Elastin and collagen, two major extracellular matrix components, help the aortic wall withstand internal pressure. Murine AAAs were created through 1) subcutaneous continuous systemic infusion of angiotensin II …