Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Biomedical Engineering and Bioengineering

Genome Sequence Of The Psychrophilic Deep-Sea Bacterium Moritella Marina Mp-1 (Atcc 15381), Kumar Babu Kautharapu, Laura R. Jarboe Nov 2012

Genome Sequence Of The Psychrophilic Deep-Sea Bacterium Moritella Marina Mp-1 (Atcc 15381), Kumar Babu Kautharapu, Laura R. Jarboe

Chemical and Biological Engineering Publications

Moritella marina MP-1 is a bacterial species known for its production of docosahexaenoic acid. We present the draft genome sequence of the type strainMoritella marina MP-1 (ATCC 15381), having 4,636,778 bp with a G+C content of 40.5% and consisting of 83 contigs.


Optimization Of Enzyme Parameters For Fermentative Production Of Biorenewable Fuels And Chemicals, Laura R. Jarboe, Ping Liu, Kumar Babu Kautharapu, Lonnie O. Ingram Oct 2012

Optimization Of Enzyme Parameters For Fermentative Production Of Biorenewable Fuels And Chemicals, Laura R. Jarboe, Ping Liu, Kumar Babu Kautharapu, Lonnie O. Ingram

Chemical and Biological Engineering Publications

Microbial biocatalysts such as Escherichia coli and Saccharomyces cerevisiae have been extensively subjected to Metabolic Engineering for the fermentative production of biorenewable fuels and chemicals. This often entails the introduction of new enzymes, deletion of unwanted enzymes and efforts to fine-tune enzyme abundance in order to attain the desired strain performance. Enzyme performance can be quantitatively described in terms of the Michaelis-Menten type parameters Km, turnover number kcat and Ki, which roughly describe the affinity of an enzyme for its substrate, the speed of a reaction and the enzyme sensitivity to inhibition by regulatory molecules. Here we describe examples of ...


Mixed-Surface, Lipid-Tethered Quantum Dots For Targeting Cells And Tissues, Yanjie Zhang, Amanda Haage, Elizabeth M. Whitley, Ian C. Schneider, Aaron R. Clapp Jun 2012

Mixed-Surface, Lipid-Tethered Quantum Dots For Targeting Cells And Tissues, Yanjie Zhang, Amanda Haage, Elizabeth M. Whitley, Ian C. Schneider, Aaron R. Clapp

Chemical and Biological Engineering Publications

Quantum dots (QDs), with their variable luminescent properties, are rapidly transcending traditional labeling techniques in biological imaging and hold vast potential for biosensing applications. An obstacle in any biosensor development is targeted specificity. Here we report a facile procedure for creating QDs targeted to the cell membrane with the goal of cell-surface protease biosensing. This procedure generates water-soluble QDs with variable coverage of lipid functional groups. The resulting hydrophobicity is quantitatively controlled by the molar ratio of lipids per QD. Appropriate tuning of the hydrophobicity ensures solubility in common aqueous cell culture media and while providing affinity to the lipid ...