Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Chemical and Biological Engineering Publications

2012

Environmental Sciences

Articles 1 - 2 of 2

Full-Text Articles in Biomedical Engineering and Bioengineering

Optimization Of Enzyme Parameters For Fermentative Production Of Biorenewable Fuels And Chemicals, Laura R. Jarboe, Ping Liu, Kumar Babu Kautharapu, Lonnie O. Ingram Oct 2012

Optimization Of Enzyme Parameters For Fermentative Production Of Biorenewable Fuels And Chemicals, Laura R. Jarboe, Ping Liu, Kumar Babu Kautharapu, Lonnie O. Ingram

Chemical and Biological Engineering Publications

Microbial biocatalysts such as Escherichia coli and Saccharomyces cerevisiae have been extensively subjected to Metabolic Engineering for the fermentative production of biorenewable fuels and chemicals. This often entails the introduction of new enzymes, deletion of unwanted enzymes and efforts to fine-tune enzyme abundance in order to attain the desired strain performance. Enzyme performance can be quantitatively described in terms of the Michaelis-Menten type parameters Km, turnover number kcat and Ki, which roughly describe the affinity of an enzyme for its substrate, the speed of a reaction and the enzyme sensitivity to inhibition by regulatory molecules. Here we describe examples of ...


Metabolic Engineering Of Biocatalysts For Carboxylic Acids Production, Ping Liu, Laura R. Jarboe Oct 2012

Metabolic Engineering Of Biocatalysts For Carboxylic Acids Production, Ping Liu, Laura R. Jarboe

Chemical and Biological Engineering Publications

Fermentation of renewable feedstocks by microbes to produce sustainable fuels and chemicals has the potential to replace petrochemical-based production. For example, carboxylic acids produced by microbial fermentation can be used to generate primary building blocks of industrial chemicals by either enzymatic or chemical catalysis. In order to achieve the titer, yield and productivity values required for economically viable processes, the carboxylic acid-producing microbes need to be robust and wellperforming. Traditional strain development methods based on mutagenesis have proven useful in the selection of desirable microbial behavior, such as robustness and carboxylic acid production. On the other hand, rationally-based metabolic engineering ...