Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Virginia Commonwealth University

Tissue Engineering

2012

Articles 1 - 3 of 3

Full-Text Articles in Biomedical Engineering and Bioengineering

Integrated Fiber Electrospinning: Creating Spatially Complex Electrospun Scaffolds With Minimal Delamination, Casey Grey Aug 2012

Integrated Fiber Electrospinning: Creating Spatially Complex Electrospun Scaffolds With Minimal Delamination, Casey Grey

Theses and Dissertations

Tissue engineering scaffolds come in many shapes and sizes, however, due to difficulty manufacturing the microstructure architecture required in tissue engineering, most scaffolds are architecturally non-dynamic in nature. Because the microstructural architecture of all biological tissues is inherently complicated, non-dynamic tissue engineering scaffolds tend to be a poor platform for tissue regeneration. The current method for manufacturing dynamic tissue engineering scaffolds involves electrospinning successive layers of different fibers, an approach that exhibits no fiber transition between layers and subsequent delamination problems. In this study we aim to address the design challenges of tissue engineering scaffolds through our novel integrated fiber …


Preparation And Characterization Of A Self-Crimp Side-By-Side Bicomponent Electrospun Material, Yang Han Aug 2012

Preparation And Characterization Of A Self-Crimp Side-By-Side Bicomponent Electrospun Material, Yang Han

Theses and Dissertations

Bicomponent composite fibers have been widely used in the textile industry and are gaining increasing attention on biomedical applications. In this research, polycaprolactone/poly (lactic acid) side-by-side bicomponent fibers were created for the application of a biodegradable scaffold. The side-by-side structure endowed the fiber with self-crimps when it was processed under certain conditions. This material was produced by electrospinning and collected on a high speed rotating mandrel to get highly oriented fibers. A mechanical stretch at the same direction was done followed by a wet heat treatment for polymer retraction. Crimped fibers were demonstrated by scanning electron microscopy. The quantitative porosity …


In Vivo Immunotoxicological Evaluation Of Electrospun Polycaprolactone (Epcl) And Investigation Of Epcl As A Drug Delivery System For Immunomodulatory Compounds, Colleen Mcloughlin May 2012

In Vivo Immunotoxicological Evaluation Of Electrospun Polycaprolactone (Epcl) And Investigation Of Epcl As A Drug Delivery System For Immunomodulatory Compounds, Colleen Mcloughlin

Theses and Dissertations

Electrospun materials have potential use in many biomedical applications such as soft tissue replacements or as scaffolds to target drug delivery to local sites. Electrospinning is a polymer processing technique that can be used to create materials composed of fibers with diameters ranging from the micron to the nanoscale. We investigated the effects of microfibrous and nanofibrous electrospun polycaprolactone (EPCL) on innate, cell-mediated, and humoral components of the immune system. Results demonstrated that in both young (12 week) and old (6 month) mice, EPCL had no effect on various immune parameters. With its lack of immunotoxicity, EPCL presents an excellent …